With compliments of the Author

Concise Total Synthesis of (-)-cis-Aerangis Lactone and (-)-cis-Cognac Lactone

Jhillu S. Yadav, ${ }^{* a}$ Ragam Nageshwar Rao, ${ }^{a}$ Begari Prem Kumar, ${ }^{a}$ Ragam Somaiah, ${ }^{a}$ Kontham Ravindar, ${ }^{\text {a }}$ Basi V. Subba Reddy, ${ }^{\text {a }}$ Ahamad Al Khazim Al Ghamdi ${ }^{\text {b }}$
${ }^{\text {a }}$ Organic Chemistry Division - I, Indian Institute of Chemical Technology, Hyderabad - 500 007, India Fax +91(40)27160512; E-mail: yadavpub@iict.res.in
${ }^{\text {b }}$ Engineer Abdullah Bagshan for Bee Research, King Saudi University, Saudi Arabia
Received 30 April 2011; revised 8 July 2011

Abstract

An efficient and concise stereoselective total synthesis of naturally occurring (-)-cis-aerangis lactone and (-)-cis-cognac lactone is described. The Sharpless asymmetric epoxidation of a primary allylic alcohol and TBSOTf-mediated intramolecular hydride transfer of a chiral epoxy alcohol have been successfully utilized for the construction of a key precursor with syn-aldol stereochemistry using a non-aldol pathway.

Key words: lactones, Wittig olefination, Sharpless asymmetric epoxidation, intramolecular hydride transfer, syn-aldol
δ-Lactones and γ-butyrolactones are important structural motifs in many biologically potent natural products. ${ }^{1}$ They are versatile building blocks for the synthesis of various biologically interesting natural products. These lac-tone-derived molecules are present in Nature in particular as pheromones and aroma compounds of many fruits, flowers, and other natural products. ${ }^{2}(-)$-cis-Aerangis lactone [(4S,5S)-4-methyl-5-decanolide, 1] was discovered by Kaiser in 1993 as the main odor component of the African moth orchids Aerangis confusa and Aerangis kirkii as a $1: 1$ mixture with its trans-diastereomer $\mathbf{2} .{ }^{3}$ Later, (-)-cis-aerangis lactone was found to be the sole stereoisomer in the scent of living white flowering orchids (Aerangis confusa). The fragrance of this natural product was typical for the lactonic odor of A. confusa and A. kirkii and was identical to the olfactory qualities of natural aerangis lactone. Its enantiomer (+)-cis-aerangis lactone was found to be reminiscent of δ-decalactone and its fragrance intensity was much lower than (-)-cis-aerangis lactone (1). ${ }^{4}$
(-)-cis-Cognac lactone [(4S,5S)-cis-4-methyl-5-pentyl-dihydrofuran-2(3H)-one, 3] is one of the Quercus lactones which are known to present in various types of wood. These Quercus lactones are responsible for the sensory characteristics of wine and other alcoholic beverages such as whisky, brandy, and cognac; they are extracted during their ageing in oak barrels. ${ }^{5}$ (-)-cis-Cognac lactone was found in both diastereomeric forms 3 and 4 in the literature. ${ }^{6}$ Consequently, many research groups were actively involved in the synthesis of racemic and enantiomerically pure cis- and trans-aerangis lactones ${ }^{7}$ and also cis- and trans-cognac lactones. ${ }^{8}$ Most of these methods involve the

SYNTHESIS 2011, No. 19, pp 3168-3172
Advanced online publication: 29.08.2011
DOI: 10.1055/s-0030-1260190; Art ID: Z42711SS
© Georg Thieme Verlag Stuttgart • New York
use of either a chiral auxiliary or enzymatic hydrolysis, mainly Baker's yeast reduction of 3-methyl-4-oxononanoic acid or bioreduction of 3-methyl-4-oxononanoic acid to introduce the chirality (Figure 1). ${ }^{9-11}$

(-)-cis-aerangis lactone (1)

(-)-cis-cognac lactone (3)

(+)-trans-aerangis lactone (2)

(+)-trans-cognac lactone (4)

Figure 1 Aerangis and cognac lactones 1-4

In continuation of our interest in the total synthesis of optically active lactones and lactone-containing natural products, ${ }^{12}$ herein we wish to report a facile synthesis of $(-)$-cis-aerangis lactone (1) and (-)-cis-cognac lactone (3).

Scheme 1 Retrosynthetic analysis of (-)-cis-aerangis lactone and (-)-cis-cognac lactone

In our approach, we utilized a common chiral aldehyde precursor 5 for the construction of both the natural products (-)-cis-aerangis lactone (1) and (-)-cis-cognac lactone (3). The stereoselective construction of aldehyde 5 was achieved by silyl triflate mediated regioselective opening of epoxy alcohol $\mathbf{6}$, which in turn can be easily accessed from commercially available and cost-effective n-hexanal (7). This synthetic strategy was successfully
utilized by our group for the total synthesis of (-)maurenone ${ }^{13}$ and 5-epi-prelactone B (Scheme 1). ${ }^{14}$

(-)-cis-aerangis lactone (1)
Scheme 2 Reagents and conditions: (a) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CO}_{2} \mathrm{Et}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 85 \%$; (b) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 90 \%$; (c) t - $\mathrm{BuOOH},(+)$-DET, $\mathrm{Ti}(\mathrm{O} i \text { - } \mathrm{Pr})_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MS} 4 \AA,-25^{\circ} \mathrm{C}, 90 \%$; (d) TBSOTf, i - $\mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MS} 4 \AA,-42{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 85 \%$; (e) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., $12 \mathrm{~h}, 80 \%$; (f) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOAc}, 6 \mathrm{~h}$, 95%; (g) AcOH, $1 \mathrm{M} \mathrm{HCl}, \mathrm{THF}, 65^{\circ} \mathrm{C}, 4 \mathrm{~h}, 65 \%$.

Accordingly, n-hexanal (7) was converted into the corresponding α, β-unsaturated ester $\mathbf{8}$ using a stabilized Wittig ylide $\left[\mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CO}_{2} \mathrm{Et}\right]$ in 85% yield. ${ }^{15}$ Selective reduction of α, β-unsaturated ester $\mathbf{8}$ using diisobutylaluminum hydride gave the allyl alcohol 9 in 90% yield. Sharpless asymmetric epoxidation of allyl alcohol 9 with tert-butyl hydroperoxide and (+)-diethyl tartrate in dichloromethane afforded the chiral epoxy alcohol 6 in 90% yield. Upon treatment of epoxy alcohol 6 with tertbutyldimethylsilyl triflate at $-42{ }^{\circ} \mathrm{C}$ gave the TBS-protected syn-aldol product 5 (common aldehyde precursor) in 85% yield. ${ }^{16}$ The aldehyde 5 was further treated with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$ in dichloromethane to obtain the α, β-unsaturated ester $\mathbf{1 0}$ as a mixture of cis- and trans-isomers in 80% yield. The cis/trans mixture of ester 10 was then subjected to catalytic hydrogenation over 10% palladium on carbon to give the saturated ester 11 in 95% yield. Finally, acid-catalyzed ($\mathrm{AcOH}, 1 \mathrm{M} \mathrm{HCl}, \mathrm{THF}$) desilylation of $\mathbf{1 1}$ followed by concomitant lactonization gave the (-)-cisaerangis lactone (1) in 65% yield. ${ }^{17}$ The spectroscopic (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and IR) data and optical rotation of (-)-cisaerangis lactone (1) were in good agreement with the literature (Scheme 2). ${ }^{7}$
The synthesis of (-)-cis-cognac lactone (3) commenced from the common aldehyde precursor 5. Accordingly, aldehyde 5 was reduced to alcohol 12 using sodium borohydride in methanol in 92% yield. ${ }^{18}$ This primary alcohol 12 was then treated with tosyl chloride in the presence of triethylamine and 4 -(dimethylamino)pyridine in dichloromethane to afford the tosylate $\mathbf{1 3}$ in 90% yield. Tosylate 13 was converted into corresponding nitrile 14 using sodium cyanide in dimethyl sulfoxide in the presence of a cat-

Scheme 3 Reagents and conditions: (a) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}$, 92%; (b) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 4 \mathrm{~h}, 90 \%$; (c) $\mathrm{NaCN}, \mathrm{NaI}$ (cat.), DMSO, $60^{\circ} \mathrm{C}, 82 \%$; (d) $1.2 \mathrm{M} \mathrm{NaOH}, \mathrm{EtOH}, 100^{\circ} \mathrm{C}, 8 \mathrm{~h} ; 2$. $10 \% \mathrm{HCl}, \mathrm{THF}, 10^{\circ} \mathrm{C}, 12 \mathrm{~h}, 70 \%$ over 2 steps.
alytic amount of sodium iodide. ${ }^{19}$ The crude nitrile $\mathbf{1 4}$ was used as such without further work-up in the next step. The subsequent base-induced hydrolysis of $\mathbf{1 4}$ followed by lactonization gave the target molecule (-)-cis-cognac lactone (3) in 70% yield. The spectroscopic (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and IR) data and optical rotation of (-)-cis-cognac lactone (3) were in good agreement with the literature (Scheme 3). ${ }^{8}$
In conclusion, we have demonstrated a highly efficient and concise total synthesis of naturally occurring (-)-cisaerangis lactone and (-)-cis-cognac lactone via the stereoselective construction of a key aldehyde precursor with syn-aldol stereochemistry using tert-butyldimethylsilyl triflate and Hünig's base mediated regioselective opening of epoxy alcohol involving intramolecular hydride transfer reaction. In contrast to previous reports, Sharpless asymmetric epoxidation was used for the introduction of chirality for the synthesis of both natural products. (-)-cisAerangis lactone was obtained in 29% overall yield in seven steps starting from n-hexanal and (-)-cis-cognac lactone was obtained in 34% overall yield in eight steps. The synthesis of remaining stereoisomers of aerangis lactone and cognac lactone are in progress.

Column chromatography was performed using silica gel 60-120 mesh. All the solvents were dried and distilled prior to use. IR spectra were recorded on a Perkin-Elmer Infrared spectrophotometer either neat or in CHCl_{3} as a thin film. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were recorded on a Varian Gemini 200MHZ and Bruker Avance 300 MHZ instruments using TMS as an internal standard. Mass spectra were recorded on Micro mass VG 7070 H mass spectrometer for EI, VG Autospec mass spectrometer for FABMS and micromass Quatro LC triple quadrupole mass spectrometer for ESI analysis. The optical rotations were recorded on Jasco DIP-360 digital polarimeter.

Ethyl (E)-2-Methyloct-2-enoate (8)

To a soln of ethyl 2-(triphenylphosphoranylidene)propanoate (72.0 $\mathrm{g}, 200 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ was added n-hexanal $(7 ; 10.0 \mathrm{~g}$, 100 mmol) at $0{ }^{\circ} \mathrm{C}$ and stirred at r.t. for 2 h . The solvent was removed under reduced pressure and the residue was purified by column chromatography (silica gel, $8 \% \mathrm{EtOAc}-$ hexane) to afford 8 $(15.64 \mathrm{~g}, 85 \%)$ as a colorless liquid.
IR (neat): 2931, 2864, 1721, 1244, $1094 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.70(\mathrm{td}, J=7.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ $(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.53-$ $1.23(\mathrm{~m}, 9 \mathrm{H}), 0.91(\mathrm{t}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.1,142.2,127.5,60.1,31.6$, 29.5, 29.4, 22.3, 14.1, 13.8, 12.1.

MS (EI): $m / z=185[\mathrm{M}+\mathrm{H}]^{+}$.

(E)-2-Methyloct-2-en-1-ol (9)

The ester $\mathbf{8}(15.64 \mathrm{~g}, 85 \mathrm{mmol})$ was dissolved in anhyd $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200$ $\mathrm{mL})$ and then treated with 25% DIBAL-H in toluene $(\mathrm{w} / \mathrm{v})(96.52$ $\mathrm{mL}, 170 \mathrm{mmol}$) in a dropwise fashion at $0{ }^{\circ} \mathrm{C}$ under an N_{2} atmosphere. After stirring for 2 h at $0^{\circ} \mathrm{C}$, sat. aq potassium sodium tartrate $(30 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 150 \mathrm{~mL})$. The combined organic layers were washed with brine, dried (anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, $10 \% \mathrm{EtOAc}$-hexane) to afford the $9(10.86 \mathrm{~g}, 90 \%)$ as a colorless oil.
IR (neat): $3337,2925,2857,1460,1379,1012 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.34$ (td, $\left.J=5.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.92$ ($\mathrm{s}, 2 \mathrm{H}$), $1.98(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.54-1.15(\mathrm{~m}, 6 \mathrm{H}), 0.87(\mathrm{t}$, $J=5.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=128.8,128.3,68.1,31.7,28.5,25.3$, 22.5, 16.4, 13.9.

MS (EI): $m / z=165[\mathrm{M}+\mathrm{Na}]^{+}$.
[(2S,3S)-2-Methyl-3-pentyloxiran-2-yl]methanol (6)
A mixture of $(+)-\operatorname{DET}(2.36 \mathrm{~g}, 11.4 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(2.72 \mathrm{~mL}$, $9.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ containing $4 \AA$ molecular sieves was stirred for 15 min at $-25^{\circ} \mathrm{C}$ under an N_{2} atmosphere. After 15 min , $4 \mathrm{M} t$-BuOOH in toluene ($42 \mathrm{~mL}, 168 \mathrm{mmol}$) was added over a period of 10 min and stirring was continued for 30 min . Then a soln of allyl alcohol $9(10.86 \mathrm{~g}, 76.4 \mathrm{mmol})$ in anhyd $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was slowly added at $-25^{\circ} \mathrm{C}$ and the mixture was allowed to stir for 1.5 h at $-25^{\circ} \mathrm{C}$ and then $20 \% \mathrm{NaOH}(9 \mathrm{~mL})$ was added followed by $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was warmed up to r.t. for 1 h and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was filtered through Celite and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 250 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine soln and concentrated under reduced pressure. Removal of the solvent followed by purification by column chromatography (silica gel, $15 \% \mathrm{EtOAc}$-hexane) afforded $6(10.87 \mathrm{~g}, 90 \%)$ as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{28}-13.5\left(c 1.6, \mathrm{CHCl}_{3}\right)$.
IR (neat): $3427,2956,2927,2862,1461,1382,1040 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.71-3.39(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~m}, 2 \mathrm{H})$, $2.96(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.20(\mathrm{~m}, 9 \mathrm{H}), 0.90(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3$ H).
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=65.7,61.2,60.4,31.5,28.0,26.0$, 22.4, 14.0, 13.8.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{O}_{2}: 159.1385$; found: 159.1390.

(2R,3S)-3-(tert-Butyldimethylsiloxy)-2-methyloctanal (5)

To a cooled $\left(-42^{\circ} \mathrm{C}\right)$ suspension of $4 \AA \mathrm{MS}(3.0 \mathrm{~g})$ in anhyd $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(80 \mathrm{~mL})$ was added a soln of epoxy alcohol $6(10 \mathrm{~g}, 63.2 \mathrm{mmol})$ and $i-\mathrm{Pr}_{2} \mathrm{NEt}(11.43 \mathrm{~g}, 88.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After 20 min , TBSOTf $(21.72 \mathrm{~g}, 82.2 \mathrm{mmol})$ was added dropwise over 15 min . The resulting soln was stirred for 1 h at $-42^{\circ} \mathrm{C}$, then quenched by addition of a buffer soln $(25 \mathrm{~mL})$ at pH 7.0 and was allowed to warm to r.t. The resulting mixture was diluted with hexane and the phases were separated. The combined organic layers were washed sat. $\mathrm{CuSO}_{4}(2 \times)$ followed by brine and then dried (anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered through Celite, and concentrated under reduced pressure to afford the crude

5 (14.63 g, 85\%) as a colorless oil. This crude aldehyde was used as such in the next step without further purification.

Ethyl (4S,5S,E)-5-(tert-Butyldimethylsiloxy)-4-methyldec-2-

 enoate (10)A soln of aldehyde $5(2 \mathrm{~g}, 7.3 \mathrm{mmol})$ in anhyd $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}(3.83 \mathrm{~g}, 11.0 \mathrm{mmol})$. The resulting mixture was stirred for 12 h at r.t. and then extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 100$ mL). The combined organic extracts were dried (anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated under reduced pressure to give $2.01 \mathrm{~g}(80 \%)$ of the crude 10 (as a mixture of cis/trans isomers), which was used as such in the next step.

Ethyl (4S,5S)-5-(tert-Butyldimethylsiloxy)-4-methyldecanoate

 (11)A soln of ester $10(2 \mathrm{~g}, 5.8 \mathrm{mmol})$ was dissolved in anhyd EtOAc and then $\mathrm{Pd} / \mathrm{C}(140 \mathrm{mg}, 1.10 \mathrm{mmol})$ was added. The mixture was stirred for 6 h at r.t. under H_{2} atmosphere. After completion, the catalyst was filtered through a Celite pad and concentrated under reduced pressure. The resulting crude residue was purified by column chromatography (silica gel) to give 11 ($1.91 \mathrm{~g}, 95 \%$).
$[\alpha]_{\mathrm{D}}{ }^{25}-5.2\left(c 2.15, \mathrm{CHCl}_{3}\right)$.
IR (neat): 3450, 2950, 2857, 2246, 1740, 1637, 1464, 1383, 1254, $1088,836,774,667 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.08(\mathrm{q}, J=7.3,14.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.52-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=6.5,14.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.44-1.18(\mathrm{~m}$, $18 \mathrm{H}), 0.93-0.78(\mathrm{~m}, 11 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.1,76.7,60.2,37.4,33.7,32.9$, 32.6, 29.7, 26.1, 25.7, 22.8, 18.3, 14.7, -0.1.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{NaSi}: 367.2644$; found: 367.2653.

cis-(4S,5S)-4-Methyl-5-decanolide (1)

A soln of ester $\mathbf{1 1}(1 \mathrm{~g}, 2.9 \mathrm{mmol})$ in $\mathrm{AcOH}(10 \mathrm{~mL}), 1 \mathrm{M} \mathrm{HCl}(10$ $\mathrm{mL})$, and THF (10 mL) was stirred at $65^{\circ} \mathrm{C}$ for 4 h . After completion, the mixture was quenched with sat. NaHCO_{3} soln $(100 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(3 \times 150 \mathrm{~mL})$. The combined organic layers were washed with brine, dried (anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated under reduced pressure. The crude product was purified by flash chromatography (silica gel, $50 \% \mathrm{EtOAc}$-hexane) to afford the pure $1(0.34 \mathrm{~g}, 65 \%)$ as a colorless viscous oil.
$[\alpha]_{\mathrm{D}}{ }^{25}-33\left(c 1.25, \mathrm{CHCl}_{3}\right)$.
IR (neat): 3452, 2930, 2863, 1734, 1460, 1378, 1246, 1122, 994, $909 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.33-4.21(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.10-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.24(\mathrm{~m}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta=172.1,83.1,35.8,32.2,32.1,31.0$, 28.4, 26.8, 26.1, 25.3, 14.6.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}: 207.1360$; found: 207.1366.
(2S,3S)-3-(tert-Butyldimethylsiloxy)-2-methyloctan-1-ol (12)
A soln of aldehyde $5(2 \mathrm{~g}, 7.3 \mathrm{mmol})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ was treated with $\mathrm{NaBH}_{4}(558 \mathrm{mg}, 5 \mathrm{mmol})$ slowly at $0^{\circ} \mathrm{C}$. The mixture stirred at $0^{\circ} \mathrm{C}$ for 2 h . After completion, the solvent was removed under reduced pressure and then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried (anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, 14% EtOAc-hexane) to afford $\mathbf{1 2}(1.85 \mathrm{~g}, 92 \%)$ as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{27}-4.0\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$.
IR (neat): $3452,2920,2852,1464,1360,1174 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.80-3.72$ (m, 1 H), 3.65 (dd, $J=10.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=10.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.87$ $(\mathrm{m}, 1 \mathrm{H}), 1.52-1.13(\mathrm{~m}, 10 \mathrm{H}), 0.92(\mathrm{~s}, 12 \mathrm{H}), 0.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2$ $\mathrm{H}), 0.10(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=68.1,66.5,38.7,34.4,31.8,25.7$, $22.5,18.1,14.3,10.5,0.1$,

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{NaSi}$: 297.2225; found: 297.2224.

(2S,3S)-3-(tert-Butyldimethylsiloxy)-2-methyloctyl 4-Methylbenzenesulfonate (13)

To a soln of alcohol $12(1.85 \mathrm{~g}, 6.7 \mathrm{mmol})$ in anhyd $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}(1.87 \mathrm{~mL}, 13.5 \mathrm{mmol}), \mathrm{TsCl}(1.53 \mathrm{~g}, 8.1 \mathrm{mmol})$, and DMAP ($164 \mathrm{mg}, 1.35 \mathrm{mmol}$) were added under an N_{2} atmosphere and the stirring continued for a further 4 h . After completion, the mixture was quenched with sat. aq $\mathrm{NH}_{4} \mathrm{Cl}$ soln and then diluted with EtOAc $(2 \times 50 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent followed by purification by column chromatography (silica gel, $10 \% \mathrm{EtOAc}-$ hexane) afforded 13 $(2.6 \mathrm{~g}, 90 \%)$ as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{27}+7.6\left(c 1.1, \mathrm{CHCl}_{3}\right)$.
IR (neat): 3449, 2954, 2922, 2857, 1708, 1605, 1513, 1464, 1364, $1253,1180,1097,1040,967,836,773,667,554 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.03-3.57(\mathrm{~m}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.79(\mathrm{~m}, 1$ H), 1.50-1.09 (m, 11 H$), 0.89(\mathrm{~d}, J=3.67 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H})$, $0.02(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta=144.5,133.0,129.7,127.8,73.01$, $71.8,37.2,33.7,31.8,25.7,25.3,17.9,13.3,10.4,-0.1,-3.6$.
MS (ESI): $m / z=429[\mathrm{M}+\mathrm{H}]^{+}$.

(3S,4S)-4-(tert-Butyldimethylsiloxy)-3-methylnonanenitrile

 (14)To a stirred soln of tosylate $\mathbf{1 3}(2 \mathrm{~g}, 4.6 \mathrm{mmol})$ in anhyd DMSO was added a soln of $\mathrm{NaI}(700 \mathrm{mg}, 4.6 \mathrm{mmol})$ and $\mathrm{NaCN}(915 \mathrm{mg}, 18.6$ $\mathrm{mmol})$ in anhyd DMSO $(15 \mathrm{~mL})$. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h . After completion, the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine, dried (anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, $12 \% \mathrm{EtOAc}$-hexane) to give pure 14 (1.08 $\mathrm{g}, 82 \%$) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{27}+7.6\left(c 1.1, \mathrm{CHCl}_{3}\right)$.
IR (neat): 3450, 2955, 2930, 2857, 2246, 1464, 1383, 1254, 1088, $836,774 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.76-3.65(\mathrm{~m}, 1 \mathrm{H}), 2.45$ (dd, $J=16.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=16.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.95$ $(\mathrm{m}, 1 \mathrm{H}), 1.50-1.20(\mathrm{~m}, 11 \mathrm{H}), 1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9$ H), $0.11(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=119.0,96.2,73.7,35.4,33.3,25.9$, 25.4, 22.6, 20.8, 14.0, 13.6, -4.5, -4.1.

MS (ESI): $m / z=301\left[\mathrm{M}+\mathrm{H}_{2} \mathrm{O}\right]^{+}$.
(4S,5S)-cis-4-Methyl-5-pentyldihydrofuran-2(3H)-one (3)
A soln of nitrile $14(1.0 \mathrm{~g}, 3.5 \mathrm{mmol})$ in abs $\mathrm{EtOH}(50 \mathrm{~mL})$ in the presence of 2 M NaOH in $\mathrm{EtOH}(10 \mathrm{~mL})$ was heated at $100^{\circ} \mathrm{C}$ for 8 h . The solvent was removed under reduced pressure and the resulting residue was dissolved in THF (50 mL) and acidified (until $\mathrm{pH} 2.0)$ with aq $10 \% \mathrm{HCl}$. The mixture was stirred at $10^{\circ} \mathrm{C}$ for 12 h. Then the mixture was diluted with $\mathrm{EtOAc}(15 \mathrm{~mL})$, washed with NaHCO_{3}, followed by $\mathrm{H}_{2} \mathrm{O}$ and brine, and the solvent was removed under reduced pressure. The crude product was purified by column
chromatography (silica gel, $40 \% \mathrm{EtOAc}-$ hexane) to afford pure $\mathbf{3}$ ($420 \mathrm{mg}, 70 \%$).
$[\alpha]_{\mathrm{D}}{ }^{25}-51\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
IR (neat): 2930, 2860, 1778, 1462, 1421, 1338, 1335, 1294, 1077, $933 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.46-4.31(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.25-2.0(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.20(\mathrm{~m}, 8 \mathrm{H}), 1.0(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.6,83.3,37.2,32.6,31.3,29.5$, 25.2, 22.1, 13.6, 13.4,.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}: 193.1204$; found: 193.1212.

Acknowledgment

R.N.R., B.P.K., R.S., and K.R. thank the CSIR, New Delhi for the award of fellowships. Author acknowledges the partial support by King Saud University for Global Research Network for Organic Synthesis (GRNOS).

References and Notes

(1) Koch, S. S. C.; Chamberlin, A. R. In Enantiomerically Pure γ-Butyrolactones in Natural Products Synthesis; Atta-urRahman, Ed.; Elsevier Science: Amsterdam, 1995, 687.
(2) (a) Mori, K. In Techniques in Pheromone Research; Hummel, H. H.; Miller, T., Eds.; Springer: New York, 1989. (b) Silverstein, R. M. In Semiochemistry Flavours and Pheromones; Acree, T.; Soderland, D. M., Eds.; Walter de Gruyter: Berlin, 1985.
(3) Kaiser, R. The Scent of Orchids, Olfactory and Chemical Investigations; Elsevier: Amsterdam, 1993.
(4) Bartschat, D.; Lehmann, D.; Dietrich, A.; Mosandl, A.; Kaiser, R. Phytochem. Anal. 1995, 6, 130.
(5) (a) Carrillo, J. D.; Garrido-Lopez, A.; Tena, M. T. J. Chromatogr., A. 2006, 1102, 25. (b) Cerdan, T. G.; Ancin-Azpilicueta, C. Food Sci. Technol. (London) 2006, 9, 199. (c) De Souza, M. D. C. A.; Vasquez, P.; Del Mastro, N. L.; Acree, T. E.; Lavin, E. H. J. Agric. Food Chem. 2006, 54, 485.
(6) (a) Takahata, H.; Uchida, Y.; Momose, T. J. Org. Chem. 1995, 60, 5628. (b) Taber, D. F.; Houze, J. B. J. Org. Chem. 1994, 59, 4004. (c) Bloch, R.; Gilbert, L. J. Org. Chem. 1987, 52, 4603. (d) Sarmah, B. K.; Barua, N. C. Tetrahedron 1993, 49, 2253. (e) Zschage, O.; Hoppe, D. Tetrahedron 1992, 48, 5657. (f) Miyata, O.; Shinada, T.; Kawakami, N.; Taji, K.; Ninomiya, I.; Naito, T.; Date, T.; Okamura, K. Chem. Pharm. Bull. 1992, 40, 2579. (g) Casey, M.; Manage, A. C.; Murphy, P. J. Tetrahedron Lett. 1992, 33, 965. (h) Sharma, G. V.; Vepachdu, S. R.; Chandrasekhar, S. Synth. Commun. 1990, 20, 3403. (i) Beckmann, M.; Hildebrandt, H.; Winterfeldt, E. Tetrahedron: Asymmetry 1990, 1, 335. (j) Marino, J. P.; de la Pradilla, R. F. Tetrahedron Lett. 1985, 26, 5381. (k) Shengming, M.; Zhangjie, S.; Zhanqian, Y. Tetrahedron 1999, 55, 12137. (1) Suzuki, Y.; Mori, W.; Ishizone, H.; Naito, K.; Honda, T. Tetrahedron Lett. 1992, 33, 4931. (m) Salaun, B.; Karkour, B.; Olliver, J. Tetrahedron 1989, 45, 3151. (n) Pai, Y.-C.; Fang, J.-M.; Wu, S. H. J. Org. Chem. 1994, 59, 6018. (o) Ebata, T.; Matsumoto, K.; Yoshikoshi, H.; Koseki, K.; Kawakami, H.; Okano, K.; Matsushita, H. Heterocycles 1993, 36, 1017.
(7) Brenna, E.; Dei Negri, C.; Fuganti, C.; Serra, S. Tetrahedron: Asymmetry 2001, 12, 1871.
(8) Felluga, F.; Forzato, C.; Ghelfi, F.; Nitti, P.; Pitacco, G.; Maria Pagnoni, U.; Roncaglia, F. Tetrahedron: Asymmetry 2007, 18, 527.
(9) (a) Ortun, O. R. M.; Merce, R.; Font, J. Tetrahedron 1987, 43, 4497. (b) Rojo, J.; García, M.; Carretero, J. C. Tetrahedron 1993, 49, 9787. (c) Ha, H.-J.; Yoon, K.-N.; Lee, S.-Y.; Park, Y.-S.; Lim, M.-S.; Yim, Y.-G. J. Org. Chem. 1998, 63, 8062.
(10) Benedetti, F.; Forzato, C.; Nitti, P.; Pitacco, G.; Valentin, E.; Vicario, M. Tetrahedron: Asymmetry 2001, 12, 305.
(11) Armstrong, A.; Chung, H. Tetrahedron Lett. 2006, 47, 1617.
(12) (a) Yadav, J. S.; Bhaskar Reddy, K.; Sabitha, G. Tetrahedron Lett. 2004, 45, 6475. (b) Yadav, J. S.; Sridhar Reddy, M.; Prasad, A. R. Tetrahedron Lett. 2005, 46, 2133.
(13) Yadav, J. S.; Ravindar, K.; Reddy, B. V. S. Synlett 2007, 1957.
(14) Srihari, P.; Ravindar, K.; Somaiah, R.; Yadav, J. S. Synth. Commun. 2008, 38, 1389.
(15) Chakraborty, T. K.; Tapadar, S. Tetrahedron Lett. 2003, 44, 2541.
(16) Jung, M. E.; D'Amico, D. C. J. Am. Chem. Soc. 1993, 115, 12208.
(17) Radha Krishna, P.; Srinivas, R. Tetrahedron Lett. 2007, 48, 4951.
(18) Seyden-Penne, J. Reductions by the Alumino- and Borohydrides in Organic Synthesis; VCH-Lavoisier: Paris, 1991.
(19) David, D. B.; Arto, T.; Mauri, L. Tetrahedron 1996, 52, 11361.

