

With compliments of the Author

This is a copy of the author's personal reprint

Stereoselective Total Synthesis of Rhoiptelol B via Prins Cyclization

Jhillu S. Yadav, *a,b Md. Ataur Rahman, a N. Mallikarjuna Reddy, a Attaluri R. Prasad, Ahmad Al Khazim Al Ghamdib

Centre for Semio Chemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India

Fax +91(40)27160512; E-mail: yadavpub@gmail.com

^b Engineer Abdullah Bagshan for Bee Research, King Saud University, Saudi Arabia

Received: 17.12.2013; Accepted after revision: 10.01.2014

Abstract: The stereoselective total synthesis of rhoiptelol B, a diarylheptanoid isolated from Rhoiptelea chiliantha is described. The tetrahydropyran ring was constructed by using Prins cyclization. The key steps involved in this synthesis are Prins cyclization, Mistunobu inversion, cross metathesis, Sharpless asymmetric dihydroxylation, and hydrogenolysis.

Key words: rhoiptelol B, natural products, diarylheptanoid, Prins cyclization, Mitsunobu inversion

The plant metabolites known as diarylheptanoids, isolated from various sources,¹ contain a 1,7-diphenylheptane skeleton. Due to the special structural features of diarylheptanoids, they have different biological activities^{2,3} such as antioxidant, anti-inflammatory, antitumor, neuroprotective, heptoprotective, anticancer, antialergic, cholesterol-lowering effect, and anti-HIV activities. The compound rhoiptelol B^{4,5} is one of the families of diarylheptanoids containing a tetrahydropyran ring, isolated form fruits of Rhoiptelea chiliantha and also form bark of Anlus hirsute in 1996 and 2007, respectively. It has shown inhibitory activities against LPS-induced NF-KB activation, NO, and TNF- α , production, and HIF-1 in AGS cells.⁵ In our ongoing program on the utilization of the highly stereoselective Prins cyclization reaction, a wellestablished method for constructing multisubstituted tetrahydropyrans⁶ for the synthesis of polyketide motifs,⁷

we have undertaken the total synthesis of rhoiptelol B

Figure 1 Structure of rhoiptelol B (1)

The retrosynthetic analysis of rhoiptelol B is described in Scheme 1. It could be achieved from hydrogenolysis of cyclic carbonate of diol 2, which in turn was obtained from cross metathesis of the olefins **3** and **4** followed by Sharpless asymmetric dihydroxylation. The tetrahydropyran moiety 3 was constructed via Prins cyclization between isovalinal (5) and homoallylic alcohol 6.

Our synthesis of rhoiptelol B is outlined in Scheme 2. Prins cyclization⁷ between known homoallylic alcohol **6**⁹ and isovalinal (5) in the presence of TFA resulted in the trifluoroacetate salt of 7, which on treatment with K₂CO₃ in MeOH gave tetrahydropyran diol 7 as the only isolable diastereomer in 62% yield. Inversion of the secondary hydroxyl group using Mitsunobu's protocol¹⁰ produced in-

Scheme 1 Retrosynthetic analysis of rhoiptelol B (1)

SYNLETT 2014, 25, 0661-0664 Advanced online publication: 11.02.2014 DOI: 10.1055/s-0033-1340181; Art ID: ST-2013-B1111-L © Georg Thieme Verlag Stuttgart · New York

(Figure 1).⁸

Scheme 2 Reagents and conditions: (a) TFA, CH_2Cl_2 then K_2CO_3 , MeOH, r.t., 4 h, 62%; (b) DEAD, TPP, 4- $C_6H_4(NO_2)COOH$, THF, 30 min, 0 °C to r.t. then K_2CO_3 , MeOH, r.t, 1 h, 75%; (c) MOMCl, DIPEA, DMAP, CH_2Cl_2 , 0 °C to r.t., 4 h, 87%; (d) Li/naphthalene, THF, -20 °C, 92%; (e) i) TPP, I_2 , imidazole, THF, 0 °C to r.t., 4 h; ii) *t*-BuOK, THF, 0 °C to r.t., 4 h, 76% for two steps; (f) 4, Grubbs II, CH_2Cl_2 , r.t., 6 h, 72%.

versed pyranol **8** in 75% overall yield in two steps. Protection of both the aromatic and aliphatic hydroxyl functionality as its MOM ether using DIPEA and MOMCl in CH_2Cl_2 produced compound **9** in 87% yield. Removal of the benzyl group in compound **9** using Li/naphthalene¹¹ in THF resulted pyranyl methanol **10** in 92% yield. Iodination of primary alcohol of **10** using I_2 , TPP, and imidazole in THF followed by elimination with *t*-BuOK in THF gave olefin **3** in 76% yield over two steps. The olefin **3** was subjected to cross metathesis with the olefin **4**¹⁵ using the Grubbs second-generation catalyst in CH_2Cl_2 and afforded compound **11** in 86% yield.

The compound **11** on Sharpless asymmetric dihydroxylation¹² using AD-mix- α afforded diol **2** in 92% yield. The resultant diol was protected as cyclic carbonate using triphosgene and Et₃N in CH₂Cl₂, followed by hydrogenolysis which afforded compound **13** in 85% yield for two steps.¹³ Finally, removal of MOM ethers using TMS-Br in CH₂Cl₂ afforded rhoiptelol B (**1**) in 72% yield (Scheme 3).¹⁴ The synthetic sample was identical in all respects {¹H NMR, ¹³C NMR, IR, *R*_f and [α]_D} to the naturally isolated compound.^{4,8}

In summary, we described a concise stereoselective total synthesis of rhoiptelol B via Prins cyclization. Our route requires total 12 steps from known homoallylic alcohol **6** and provides 11% overall yield.

Acknowledgement

N.M.R. thanks CSIR, New Delhi for the award of a fellowship. J.S.Y. thanks CSIR for the award of a Bhatnagar Fellowship.

References and Notes

- Zhu, J.; Islas-Gonzalez, G.; Bois-Choussy, M. Org. Prep. Proced. Int. 2000, 32, 505.
- (2) (a) Joo, S. S.; Kim, S. G.; Choi, S. E.; Kim, Y. B.; Park, H. Y.; Seo, S. J.; Choi, Y. W.; Lee, M. W.; Lee, D. Eur. J. Pharmacol. 2009, 614, 98. (b) Lee, C. S.; Jang, E.; Kim, Y. J.; Lee, M. S.; Seo, S. J.; Lee, M. W. Int. Immunopharm. 2010, 10, 520. (c) Masuda, Y.; Kikuzaki, H.; Hisamoto, M.; Nakatani, N. BioFactors 2004, 21, 293. (d) Yasukawa, K.; Sun, Y.; Kitanaka, S.; Tomizawa, N.; Miura, M.; Motohashi, S. J. Nat. Med. 2008, 62, 374. (e) Han, J. M.; Lee, W. S.; Kim, J. R.; Son, J.; Nam, K. H.; Choi, S. C.; Lim, J. S.; Jeong, T. S. J. Agric. Food Chem. 2007, 55, 9457. (f) Ishida, J.; Kozuka, M.; Tokuda, H.; Nishino, H.; Nagumo, S.; Lee, K. H.; Nagai, M. Bioorg. Med. Chem. 2002, 10, 3361. (g) Ishida, J.; Kozuka, M.; Yang, M. X.; Nishino, H.; Sakurai, N.; Lee, K. H.; Nagai, M. Cancer Lett. 2000, 159, 135.
- (3) (a) Lee, C. S.; Ko, H. H.; Seo, S. J.; Choi, Y. W.; Lee, M. W.; Myung, S. C.; Bang, H. *Int. Immunopharmacol.* 2009, *9*, 1097. (b) Ohtsu, H.; Itokawa, H.; Xiao, Z.; Su, C. Y.; Shih, C. C. Y.; Chiang, T.; Chang, E.; Lee, Y. F.; Chiu, S. Y.; Chang, C.; Lee, K. H. *Bioorg. Med. Chem.* 2003, *11*, 5083. (c) Intapad, S.; Suksamrarn, A.; Piyachaturawat, P. *Vascul. Pharmacol.* 2009, *51*, 284. (d) Winuthayanon, W.; Suksen, K.; Boonchird, C.; Chuncharunee, A.; Ponglikitmongkol,

Scheme 3 Reagents and conditions: (a) AD-mix- α , t-BuOH–H₂O (1:1), MeSONH₂, 24 h, 0 °C, 92%; (b) triphosgene, Et₃N, CH₂Cl₂; (c) Raney-Ni, H₂, EtOH, 85% for two steps; (d) TMSBr, CH₂Cl₂, -30 °C, 4 h, 72%.

M.; Suksamrarn, A.; Piyachaturawat, P. J. Agric. Food Chem. 2009, 57, 840.

- (4) Jiang, Z.; Jiang, Z.-H.; Tanaka, T.; Hirata, H.; Fukuoka, R.; Kouno, I. *Phytochemistry* **1996**, *43*, 1049.
- (5) (a) Jin, W.-Y.; Cai, X. F.; Na, M.-K.; Lee, J. J.; Bae, K.-H. *Arch. Pharmacol. Res.* 2007, *30*, 412. (b) Jin, W.-Y.; Cai, X. F.; Na, M.-K.; Lee, J. J.; Bae, K.-H. *Biol. Pharm. Bull.* 2007, *30*, 810.
- (6) (a) Barry, C. St. J.; Crosby, S. R.; Harding, J. R.; Hughes, R. A.; King, C. D.; Parker, G. D.; Willis, C. L. Org. Lett. 2003, 5, 2429. (b) Yang, X.-F.; Mague, J. T.; Li, C.-J. J. Org. Chem. 2001, 66, 739. (c) Yadav, J. S.; Reddy, B. V. S.; Sekhar, K. C.; Gunasekar, D. Synthesis 2001, 885. (d) Yadav, J. S.; Reddy, B. V. S.; Reddy, M. S.; Niranjan, N. J. Mol. Catal. A: Chem. 2004, 210, 99. (e) Yadav, J. S.; Reddy, B. V. S.; Reddy, B. V. S.; Reddy, M. S.; Niranjan, N.; Prasad, A. R. Eur. J. Org. Chem. 2003, 1779. (f) Rychnovsky, S. D.; Powell, N. A. J. Org. Chem. 1997, 62, 6460.
- (7) (a) Yadav, J. S.; Reddy, M. S.; Prasad, A. R. *Tetrahedron Lett.* 2005, 46, 2133. (b) Yadav, J. S.; Sridhar Reddy, M.; Prasad, A. R. *Tetrahedron Lett.* 2006, 47, 4995. (c) Yadav, J. S.; Purushothama Rao, P. M.; Sridhar Reddy, M.; Venkateswar Rao, N.; Prasad, A. R. *Tetrahedron Lett.* 2007, 48, 1469. (d) Yadav, J. S.; Lakshmi, A. K.; Mallikarjuna Reddy, N.; Prasad, A. R.; Subba Reddy, B. V. *Tetrahedron* 2010, 66, 334.

- (8) Previous total synthesis of rhoiptelol B: (a) Yadav, J. S.; Pandurangam, T.; Bhadra Reddy, V. V.; Reddy, B. V. S. *Synthesis* 2010, 4300. (b) Reddy, C. R.; Rao, N. N.; Srikanth, B. *Eur. J. Org. Chem.* 2010, 345.
- (9) (a) Matsuura, F.; Peters, R.; Anada, M.; Harried, S. S.; Hao, J.; Kishi, Y. *J. Chem. Am. Soc.* 2006, *128*, 463. (b) Koza, G.; Theunissen, C.; Al Dulayymi, J. R.; Baird, M. S. *Tetrahedron* 2009, *65*, 10214. (c) George, S.; Sudalai, A. *Tetrahedron Lett.* 2007, *48*, 8544.
- (10) Mitsunobu, O. Synthesis 1981, 1.
- (11) Liu, H. J.; Yip, J. Tetrahedron Lett. 1997, 38, 2253.
- (12) (a) Carlisle, J.; Fox, D. J.; Warren, S. *Chem. Commun.* 2003, 2696. (b) Krishna, P. R.; Kumar, E. S. *Tetrahedron Lett.* 2009, *50*, 6676. (c) Sabitha, G.; Nayak, S.; Bhikshapathi, M.; Yadav, J. S. *Tetrahedron Lett.* 2009, *50*, 5428.
- (13) Kobayashi, S.; Matsubara, R.; Nakamura, Y.; Kitagawa, H.; Sugiura, M. J. Chem. Am. Soc. 2003, 125, 2507.
- (14) Imoto, H.; Matsumoto, M.; Odaka, H.; Sakamoto, J.; Kimura, H.; Nonaka, M.; Kiyota, Y.; Momose, Y. *Chem. Pharm. Bull.* **2004**, *52*, 120.
- (15) Preparation of compound 4 from *p*-hydroxybenzaldehyde (Scheme 4).

Scheme 4

(16) (2*R*,4*S*,6*R*)-2-[2-(Benzyloxy)ethyl]-6-(4-hydroxy-3methoxyphenyl)tetrahydro-2*H*-pyran-4-ol (7)

$$\begin{split} & [\alpha]_D{}^{25} + 38.3 \ (c\ 1.01,\ CHCl_3). \ ^{1}H\ NMR\ (300\ MHz,\ CDCl_3): \\ & \delta = 7.20 - 7.17\ (m,\ 5\ H),\ 6.83 - 6.78\ (m,\ 2\ H),\ 6.77 - 6.71\ (m,\ 1\ H),\ 5.45\ (br\ s,\ OH,\ 1\ H),\ 4.47\ (s,\ 2\ H),\ 4.23\ (dd,\ J = 1.3,\ 11.3\ Hz,\ 1\ H),\ 3.86\ (s,\ 3\ H),\ 3.70 - 3.50\ (m,\ 4\ H),\ 2.18 - 2.08\ (m,\ 1\ H),\ 2.04 - 1.94\ (m,\ 1\ H),\ 1.93 - 1.74\ (m,\ 2\ H),\ 1.34 - 1.20\ (m,\ 2\ H),\ 1$$

(2*R*,4*R*,6*R*)-2-[2-(Benzyloxy)ethyl]-6-(4-hydroxy-3-methoxyphenyl)tetrahydro-2*H*-pyran-4-ol (8) [α]_D²⁵+32.2 (*c* 0.83, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.34–7.29 (m, 5 H), 6.89–6.81 (m, 3 H), 4.77 (d, *J* = 10.6 Hz, 1 H), 4.51 (s, 2 H), 4.34–4.31 (m, 1 H), 4.17–4.09 (m, 1 H), 3.86 (s, 3 H), 3.69–3.59 (m, 2 H), 1.93–1.85 (m, 2 H), 1.84–1.76 (m, 1 H), 1.75–1.69 (m, 2 H), 1.64–1.57 (m, 1 H). ¹³C NMR (75 MHz, CDCl₃): δ = 146.3, 144.7, 138.5, 135.0, 128.2, 127.5, 127.4, 118.7, 114.0, 108.7, 73.2, 72.8, 69.2, 66.8, 64.9, 55.8, 40.1, 38.5, 36.2; IR (neat): ν_{max} = 3385, 2921, 2853, 1517, 1273, 1074, 1033, 747 cm⁻¹. ESI-MS: *m/z* = 381 [M + Na]⁺.

(2*R*,4*R*,6*R*)-2-[2-(Benzyloxy)ethyl]-6-[3-methoxy-4-(methoxymethoxy)phenyl]-4-(methoxymethoxy)tetrahydro-2*H*-pyran (9)

 $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{25} + 34.2 \ (c \ 1.04, CHCl_3). \ ^{1}H \ NMR \ (300 \ MHz, CDCl_3): \\ \delta = 7.29 - 7.16 \ (m, 5 \ H), 7.02 \ (d, J = 8.0 \ Hz, 1 \ H), 6.86 - 6.75 \ (m, 2 \ H), 5.13 \ (s, 2 \ H), 4.70 - 4.63 \ (m, 3 \ H), 4.43 \ (s, 2 \ H), \\ 4.08 - 3.96 \ (m, 2 \ H), 3.78 \ (s, 2 \ H), 3.61 - 3.52 \ (m, 2 \ H), 3.43 \ (s, 3 \ H), 3.33 \ (s, 3 \ H), 1.99 - 1.88 \ (m, 1 \ H), 1.87 - 1.68 \ (m, 3 \ H), 1.67 - 1.57 \ (m, 1 \ H), 1.51 - 1.39 \ (m, 1 \ H). \ ^{13}C \ NMR \ (75 \ MHz, CDCl_3): \\ \delta = 149.6, 145.5, 138.6, 137.5, 128.2, 127.4, \\ 127.3, 118.1, 116.2, 109.7, 95.4, 95.0, 73.7, 72.9, 70.1, 69.9, \\ 66.8, 56.0, 55.7, 55.3, 38.4, 36.4, 36.2. \ IR \ (neat): v_{max} =$

© Georg Thieme Verlag Stuttgart · New York

2927, 1513, 1267, 1153, 1037 cm⁻¹. ESI-HRMS: m/z [M + H]⁺ calcd for C₂₅H₃₄O₇Na: 469.21792; found: 469.21967. 2-{(2R,4R,6R)-6-[3-Methoxy-4-(methoxymethoxy)-phenyl]-4-(methoxymethoxy)tetrahydro-2*H*-pyran-2-yl}ethanol (10)

$$\begin{split} & [\alpha]_{\rm D}{}^{25} + 34.0 \ (c\ 0.65,\ {\rm CHCl}_3).\ ^1{\rm H}\ {\rm NMR}\ (300\ {\rm MHz},\ {\rm CDCl}_3): \\ & 5 = 7.03\ (d,\ J = 8.3\ {\rm Hz},\ 1\ {\rm H}),\ 6.84-6.74\ (m,\ 2\ {\rm H}),\ 5.14\ (s,\ 2\ {\rm H}),\ 4.72\ (dd,\ J = 1.1,\ 11.3\ {\rm Hz},\ 1\ {\rm H}),\ 4.67\ (s,\ 2\ {\rm H}),\ 4.17-4.02\ (m,\ 2\ {\rm H}),\ 3.81\ (s,\ 3\ {\rm H}),\ 3.79-3.72\ (m,\ 2\ {\rm H}),\ 3.44\ (s,\ 3\ {\rm H}),\ 3.35\ (s,\ 3\ {\rm H}),\ 2.03-1.94\ (m,\ 1\ {\rm H}),\ 1.85-1.56\ (m,\ 5\ {\rm H}),\ ^{13}{\rm C}\ {\rm NMR}\ (75\ {\rm MHz},\ {\rm CDCl}_3):\ \delta = 149.7,\ 145.7,\ 136.9,\ 118.0,\ 109.4,\ 95.4,\ 95.1,\ 74.2,\ 73.6,\ 69.9,\ 61.6,\ 56.0,\ 55.8,\ 55.4,\ 38.3,\ 37.8,\ 36.1.\ {\rm IR}\ (neat):\ v_{\rm max} = 3417,\ 2924,\ 1516,\ 1036\ {\rm cm}^{-1}.\ {\rm ESI-HRMS}:\ m/z\ [{\rm M}+{\rm H}]^+\ {\rm calcd}\ {\rm for}\ C_{18}{\rm H}_{28}{\rm O}_7{\rm Na}:\ 379.17191;\ {\rm found:}\ 379.17272. \end{split}$$

(2*S*,4*R*,6*R*)-2-(2-Iodoethyl)-6-[3-methoxy-4-(methoxymethoxy)phenyl]-4-(methoxymethoxy)tetrahydro-2*H*-pyran (11)

[α]_D²⁵+28.4 (*c* 0.34, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.10 (d, *J* = 8.2 Hz, 1 H), 6.97 (d, *J* = 1.9 Hz, 1 H), 6.88 (dd, *J* = 1.6, 8.2 Hz, 1 H), 6.86–5.89 (m, 1 H), 5.31 (m, 1 H), 5.12 (m, 1 H), 5.20 (s, 2 H), 4.81 (dd, *J* = 1.8, 11.7 Hz, 1 H), 4.76 (d, *J* = 0.9 Hz, 2 H), 4.47–4.42 (m, 1 H), 4.16–4.13 (m, 2 H), 3.89 (s, 3 H), 3.50 (s, 3 H), 3.43 (s, 3 H), 2.04–1.98 (m, 1 H), 1.94–1.90 (m, 1 H), 1.75–1.69 (dtd, *J* = 2.7, 11.9, 14.3 Hz, 1 H), 1.64–1.58 (dtd, *J* = 2.7, 11.7, 14.3, 1 H). ¹³C NMR (75 MHz, CDCl₃): δ = 149.6, 145.6, 139.0, 137.2, 118.2, 116.2, 4.8, 109.8, 95.5, 95.1, 73.9, 73.3, 70.0, 56.0, 55.8, 55.4, 38.2, 35.9. IR (neat): v_{max} = 2923, 2851, 1513, 1266, 1153, 1075, 1037 cm⁻¹. ESI-HRMS: *m/z* [M + H]⁺ calcd for

C₁₈H₂₆O₆Na: 361.16163; found: 361.16216.

(2*R*,4*R*,6*S*)-2-[3-Methoxy-4-(methoxymethoxy)phenyl]-4-(methoxymethoxy)-6-[(*E*)-4-(methoxymethoxy)styryl]tetrahydro-2*H*-pyran (2)

(1S,2R)-1-{(2S,4S,6R)-6-[3-Methoxy-4-(methoxymethoxy)phenyl]-4-(methoxymethoxy)tetrahydro-2H-pyran-2yl}-2-[4-(methoxymethoxy)phenyl]ethane-1,2-diol (12) [α]_D²⁵+24.6 (*c* 0.44, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.32–7.28 (m, 2 H), 7.13 (d, J = 3.2 Hz, 1 H), 7.03–7.00 (m, 2 H), 6.91–6.86 (m, 2 H), 5.23 (s, 3 H), 5.16 (s, 3 H), 4.84 (d, J = 5.0 Hz, 1 H), 4.77 (dd, J = 1.6, 11.7 Hz, 1 H), 4.69 (s, 1.6)3 H), 4.17-3.69 (m, 1 H), 3.90 (s, 3 H), 3.52 (s, 3 H), 3.47 (s, 3 H), 3.32 (s, 3 H), 2.50–2.48 (m, 1 H), 2.02–1.94 (m, 1 H), 1.77-1.67 (m, 1 H), 1.63 (br s, OH, 1 H), 1.37-1.23 (m, 2 H). ¹³C NMR (75 MHz, CDCl₃): δ = 156.7, 149.7, 16.4, 134.2, 127.7, 118.2, 116.1, 109.7, 95.4, 95.1, 94.4, 74.7, 74.3, 73.6, 70.0, 56.1, 55.9, 55.4, 43.3, 37.9, 32.1, 29.6, 25.6. IR (neat): $v_{max} = 3449, 2925, 2852, 1512, 1266, 1153, 1076, 1036,$ 1000 cm⁻¹. ESI-HRMS: m/z [M + H]⁺ calcd for C₂₆H₃₆O₁₀Na: 531.21809; found: 531.22007. (S)-1-{(2S,4S,6R)-6-[3-Methoxy-4-(methoxymethoxy)phenyl]-4-(methoxymethoxy)tetrahydro-2H-pyran-2yl}-2-[4-(methoxymethoxy)phenyl]ethanol (13) [α]_D²⁵+11.20 (*c* 0.87, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.19–7.09 (m, 3 H), 7.02–6.82 (m, 4 H), 5.23 (s, 2 H), 5.16 (s, 3 H), 4.81-4.64 (m, 3 H), 4.36-4.24 (m, 1 H), 4.25-

5.16 (s, 3 H), 4.81–4.64 (m, 3 H), 4.36–4.24 (m, 1 H), 4.25– 4.19 (m, 1 H), 3.89 (s, 3 H), 3.78–3.60 (m, 1 H), 3.51 (s, 3 H), 3.46 (s, 3 H), 3.37 (s, 3 H), 2.90–2.70 (m, 2 H), 2.51 (br s, OH, 1 H), 2.08–1.87 (m, 2 H), 1.79–1.64 (m, 2 H). ¹³C NMR (75 MHz, CDCl₃): δ = 155.7, 149.6, 137.0, 131.8, 130.7, 130.3, 128.7, 118.2, 116.2, 114.1, 109.7, 95.5, 95.1, 94.5, 77.0, 74.4, 74.0, 70.1, 56.1, 55.8, 55.4, 38.6, 38.3, 31.9. IR (neat): v_{max} = 3450, 2925, 2854, 1636 cm⁻¹. ESI-MS: *m/z* = 515 [M + Na]⁺.

Rhoiptelol B (1):

Mp 65–67 °C; $[\alpha]_D^{25}$ +87.4 (*c* 0.3, MeOH). ¹H NMR (300 MHz, CD₃OD): δ = 7.05 (br s, 1 H), 7.04 (d, *J* = 8.4 Hz, 2 H), 6.82 (dd, *J* = 8.4, 2.0 Hz, 1 H), 6.74 (d, *J* = 8.4 Hz, 1 H), 6.67 (d, *J* = 8.4 Hz, 2 H), 4.67 (dd, *J* = 10.7, 3.2 Hz, 1 H), 4.26 (t, *J* = 3.2 Hz, 1 H), 3.85 (s, 3 H), 3.80 (dt, *J* = 12.7, 2.9 Hz, 1 H), 3.59 (dt, *J* = 7.4, 3.2 Hz, 1 H), 2.84 (dd, *J* = 13.0, 6.6 Hz, 1 H), 2.67 (dd, *J* = 13.0, 7.4 Hz, 1 H), 1.91 (dd, *J* = 13.3, 3.0 Hz, 1 H), 1.82 (dd, *J* = 14.3, 2.9 Hz, 1 H), 1.73 (ddd, *J* = 13.6, 10.9, 2.8 Hz, 1 H), 1.57 (dd, *J* = 13.6, 2.0 Hz, 1 H). ¹³C NMR (75 MHz, CD₃OD): δ = 156.7, 148.8, 146.8, 136.2, 131.4, 131.3, 131.1, 119.8, 116.0, 115.8, 115.7, 111.1, 76.4, 75.2, 74.3, 65.7, 56.4, 41.2, 39.7, 35.0; IR (neat): v_{max} = 3392, 2953, 2928, 1595, 1502, 1365, 1174, 1083, 854, 716 cm⁻¹. ESI-HRMS: *m*/z [M + Na]⁺ calcd for C₂₀H₂₄O₆Na: 383.1470; found: 383.1461.