## Tetrahedron Letters 54 (2013) 5758-5760

Contents lists available at ScienceDirect

**Tetrahedron Letters** 

journal homepage: www.elsevier.com/locate/tetlet

# Stereoselective total synthesis of xyolide

B. V. Subba Reddy <sup>a,\*</sup>, P. Sivaramakrishna Reddy <sup>a</sup>, B. Phaneendra Reddy <sup>a</sup>, J. S. Yadav <sup>a</sup>, Ahamad Al Khazim Al Ghamdi <sup>b</sup>

<sup>a</sup> Natural Products Chemistry, Indian Institute of Chemical Technology, Hyderabad 500 007, India <sup>b</sup> Engineer Abdullah Baqshan for Bee Research, King Saudi University, Saudi Arabia

## ARTICLE INFO

# ABSTRACT

Article history: Received 19 July 2013 Revised 8 August 2013 Accepted 11 August 2013 Available online 16 August 2013

Keywords: Xyolide MacMillan aminooxylation Steglich esterification Ring closing metathesis

Nonenolides have emerged as attractive synthetic targets due to their potent biological activities.<sup>1</sup> Many of these lactones are being produced by fungi, bacteria, and marine organisms. A few of them are isolated from plants or insects (pheromones).

The 10-membered macrolides such as stagonolides A–I,<sup>2</sup> decarestrictines A, D, and J,<sup>3</sup> herbarumins I–III,<sup>4</sup> and microcarpalide<sup>5</sup> (Fig. 1) are known to exhibit potent biological activities such as antibacterial, antifungal, cytotoxic, and phytotoxic behavior which make them attractive synthetic targets. In particular, xyolide (1), a 10-membered macrolide isolated from the Amazonian endophytic fungus, *Xylaria feejeensis* is important. The structure of **1** was established by <sup>1</sup>D and <sup>2</sup>D NMR and the absolute configuration was determined by exciton-coupled circular dichroism. The minimum inhibitory concentration (MIC) of xyolide against *P. ultimum* was 425  $\mu$ M.<sup>6</sup>

In continuation of our interest on the total synthesis of biologically active molecules,<sup>7</sup> herein we report the stereoselective total synthesis of xyolide employing *n*-nonanal as a cost-effective and readily available precursor. Our retrosynthetic analysis of xyolide **1** reveals that it could be synthesized by means of RCM of **14**, which in turn could be prepared through the esterification of alkenoic acid **13** with alkenol **8**. The intermediates **13** and **8** could easily be accessed from the commercially available pentane-1,5diol **3** and *n*-nonanal **2**, respectively (Scheme 1).

Accordingly, the synthesis of xyolide **1** began from *n*-nonanal **2**, which was subjected to a sequential aminoxylation catalyzed by

\* Corresponding author. Fax: +91 40 27160512.

L-proline at -20 °C followed by olefination to furnish the γ-butenolide **4** in 60% yield.<sup>8</sup> Sharpless asymmetric dihydroxylation<sup>9</sup> of γ-butenolide **4** with AD-mix-α in *tert*-butanol and water system gave the diol **5** in 94% yield. Protection of the diol with 2,2-dimethoxypropane in the presence of PPTS gave the lactone **6** which was then reduced with DIBAL-H to give the lactol **7** in 92% yield. Lactol **7** was subjected to one carbon Wittig homologation with methyltriphenylphosphonium iodide in the presence of KO'Bu to give the alkenol **8** in 82% yield (Scheme 2).<sup>10</sup>

A stereoselective total synthesis of xyolide is described employing MacMillan  $\alpha$ -hydroxylation, Steglich

esterification, and ring closing metathesis as key steps. The use of organocatalytic MacMillan  $\alpha$ -hydrox-

vlation to construct two of the chiral centers of the xyolide makes this approach attractive.

Next, we focused on the synthesis of another key intermediate **13** which was commenced from pentane-1,5-diol **3**. Mono-protection of the diol **3** with BnBr in the presence of NaH in THF afforded











© 2013 Elsevier Ltd. All rights reserved.

E-mail address: basireddy@iict.res.in (B.V.S. Reddy).

<sup>0040-4039/\$ -</sup> see front matter  $\circledast$  2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.08.038



Scheme 1. Retrosynthetic analysis of xyolide.

the benzyl ether in 88% yield, which was further subjected to oxidation with IBX to give the aldehyde **9** in 87% yield.  $\alpha$ -Amino-oxylation of compound **9** with nitrasobenzene using D-proline followed by reduction with NaBH<sub>4</sub> and subsequent cleavage of the aminooxy alcohol with CuSO<sub>4</sub>·5H<sub>2</sub>O furnished the required diol **10** (98% ee, by HPLC analysis) in 60% yield.<sup>11</sup> Treatment of the diol **10** with NaH and *N*-tosylimidazole gave the epoxide in 80% yield. The epoxide formed was treated with trimethylsulfonium iodide in the presence of *n*-BuLi in THF at  $-20 \,^{\circ}$ C to give the desired allylic alcohol in 88% yield,<sup>12</sup> which was then protected as its TBS ether **11** using TBSCl and imidazole. Compound **11** was treated with Li/naphthalene to afford the alcohol **12** in 90% yield. One-pot oxidation of compound **12** with TEMPO-BAIB afforded the acid **13** in 85% yield (Scheme 3).

Finally, we attempted the coupling of alcohol **8** with carboxylic acid **13** so as to construct a 10-membered ring via RCM reaction.

Under Steglich conditions (DCC/DMAP), the coupling of alcohol **8** with acid **13** gave the corresponding ester **14** in 85% yield.<sup>13</sup> Removal of TBS ether using HF-pyridine followed by ring-closing metathesis of **14** using Grubbs' second generation catalyst<sup>14</sup> in CH<sub>2</sub>Cl<sub>2</sub> under reflux conditions for 6 h gave the 10-membered macrolide **15** (exclusively as its *E*-isomer) in 80% yield. Esterifica-



**Scheme 2.** Reagents and conditions: (a) (i) PhNO, L-proline (40 mol %), DMSO, 20 °C; (ii)  $(CF_3CH_2O)_2P(O)CH_2CO_2CH_3$ , DBU, LiCl, THF, -20 °C then MeOH, NH<sub>4</sub>Cl, Cu(OAc)<sub>2</sub>, rt, 24 h; (b) AD-mix- $\alpha$ , *t*-BuOH, H<sub>2</sub>O (1:1). (c) 2,2-DMP, PPTS, CH<sub>2</sub>Cl<sub>2</sub>, 89%; (d) DIBAL-H, THF, 0 °C to rt, 92%. (e) CH<sub>3</sub>PPh<sub>3</sub>I, KO<sup>t</sup>Bu, THF, 0 °C to rt, 82%.



**Scheme 3.** Reagents and conditions: (a) (i) BnBr, NaH, THF, 0 °C to rt., 6 h, 88%. (ii) IBX, DMSO,  $CH_2Cl_2$ , 0 °C to rt, 4h, 87%; (b) PhNO, D-proline (40 mol %), DMSO, rt, 30 min then NaBH<sub>4</sub>, EtOH, then  $CuSO_4$ , MeOH, 12 h, 60%; (c) (i) NaH, *N*-tosylimidazole, 80%. (ii) Me<sub>3</sub>Sl, *n*-BuLi, THF, -20 °C, 88%; (iii) TBSCl, imidazole, CH<sub>2</sub>Cl<sub>2</sub>, 2 h, 95%; (d) Li, naphthalene, -20 °C, 90%; (e) TEMPO–BAIB, CH<sub>3</sub>CN, H<sub>2</sub>O (1:1) rt, 85%.



**Scheme 4.** Reagents and conditions: (a) DCC, DMAP,  $CH_2CI_2$ , rt, 85%; (b) (i) HF-pyridine, THF, 0 °C to rt, 10 h, 89%; (ii) Grubbs' catalyst-II,  $CH_2CI_2$ , reflux, 3 h, 80%; (c)  $C_4H_4O_3$ , DMAP,  $CH_2CI_2$ , 89%; (d) 2 N HCI, THF, 4 h, 73%.

tion of the macrolide **15** with succinic anhydride<sup>15</sup> followed by removal of the acetonide using 2 N HCl furnished the target molecule xyolide **1** in 73% yield (Scheme 4). The spectral data (<sup>1</sup>H and <sup>13</sup>C NMR, IR,  $[\alpha]_D^{20}$ ) of xyolide **1** were identical in all respects with the data reported in the literature.<sup>6</sup>

In summary, we have developed a concise and convergent approach for the total synthesis of xyolide in a highly stereoselective manner. MacMillan organocatalytic  $\alpha$ -hydroxylation and asymmetric dihydroxylation are successfully employed to establish the chiral centers of xyolide.

### Acknowledgments

P.S.R.K.R. and B.P.R. thank CSIR, New Delhi for the award of fellowships. J.S.Y. thanks CSIR, New Delhi for Bhatnagar Fellowship.

## Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2013.08. 038.

### **References and notes**

 (a) Nicolaou, K. C.; Chen, J. S.; Dalby, S. M. Bioorg. Med. Chem. 2009, 17, 2290; (b) Hendrik, G.; Peter, J. S.; Ekaterina, E.; Stefan, K.; Gabriele, M. K. J. Nat. Prod. 2008, 71, 1651; (c) Piel, J. Nat. Prod. Rep. 2009, 26, 338; (d) Riatto, V. B.; Pilli, R. A.; Victor, M. M. Tetrahedron 2008, 64, 2279; (e) Surat, B.; Prasat, K.; Masahiko, I.; Daraporn, P.; Morakot, T.; Yodhathai, T. J. Nat. Prod. 2001, 64, 965. and references therein.

- (a) Evidente, A.; Cimmino, A.; Berestetskiy, A.; Mitina, G.; Andolfi, A.; Motta, A. J. Nat. Prod. 2008, 71, 31; (b) Evidente, A.; Cimmino, A.; Be restetskiy, A.; Andolfi, A.; Motta, A. J. Nat. Prod. 2008, 71, 1897; (c) Yuzikhin, O.; Mitina, G.; Berestetskiy, A. J. Agric. Food Chem. 2007, 55, 7707.
- **3.** (a) Grabley, S.; Granzer, E.; Hütter, K.; Ludwig, D.; Mayer, M.; Thiericke, R.; Till, G.; Wink, J.; Philipps, S.; Zeeck, A. *J. Antibiot.* **1992**, *45*, 56; (b) Göhrt, A.; Zeeck, A.; Hütter, K.; Kirsch, R.; Kluge, H.; Thiericke, R. *J. Antibiot.* **1992**, *45*, 66.
- (a) Rivero-Cruz, J. F.; Garcia-Aguieee, G.; Cerda-Garcia-Rojas, C. M.; Mata, R. *Tetrahedron* 2000, 56, 5337; (b) Rivero-Cruz, J. F.; Martha, M.; CerdaGarcia-Rojas, C. M.; Mata, R. J. Nat. Prod. 2003, 66, 511.
- 5. Ratnayake, A. S.; Yoshida, W. Y.; Mooberry, S. L.; Hemscheidt, T. Org. Lett. 2001, 3, 3479.
- Baraban, E. G.; Morin, J. B.; Phillips, G. M.; Phillips, A. J.; Strobel, S. A.; Handelsman, J. Tetrahedron Lett. 2013, 54, 4058.
- (a) Reddy, B. V. S.; Reddy, B. P.; Pandurangam, T.; Yadav, J. S. *Tetrahedron Lett.* 2011, *52*, 2306; (b) Reddy, P. J.; Reddy, A. S.; Yadav, J. S.; Reddy, B. V. S.

*Tetrahedron Lett.* **2012**, 53, 4051; (c) Kishore, Ch.; Reddy, A. S.; Yadav, J. S.; Reddy, B. V. S. *Tetrahedron Lett.* **2012**, 53, 4551; (d) Yadav, J. S.; Reddy, Y. J.; Reddy, P. A. N.; Reddy, B. V. S. *Org. Lett.* **2013**, *15*, 546.

- 8. Devalankar, D. A.; Chouthaiwale, P. V.; Sudalai, A. Tetrahedron: Asymmetry 2012, 23, 240.
- (a) Jacobsen, E. N.; Marko, I.; Mungall, W. S.; Schroeder, G.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968; (b) Kolb, H. C.; Van Nieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483–2547.
- Srihari, P.; Kumaraswamy, B.; Shankar, P.; Ravishashidhar, V.; Yadav, J. S. Tetrahedron Lett. 2010, 51, 6174.
- (a) Zhong, G. Angew. Chem., Int. Ed. 2003, 42, 4247; (b) Reddy, B. V. S.; Reddy, B. P.; Pandurangam, T.; Yadav, J. S. Tetrahedron Lett. 2011, 52, 2306.
- Reddy, B. P.; Reddy, B. V. S.; Pandurangam, T.; Yadav, J. S. Tetrahedron Lett. 2012, 53, 5749.
- 13. Shimizu, T.; Masuda, T.; Hiramoto, K.; Nakata, T. Org. Lett. 2000, 2, 2153.
- 14. Grubbs, H. R.; Chang, S. Tetrahedron 1998, 54, 4413.
- 15. Kobayashi, Y.; Okui, H. J. Org. Chem. 2000, 65, 612.