Stereoselective total synthesis of xyolide

B. V. Subba Reddy ${ }^{\text {a,* }}$, P. Sivaramakrishna Reddy ${ }^{\text {a }}$, B. Phaneendra Reddy ${ }^{\text {a }}$, J. S. Yadav ${ }^{\text {a }}$, Ahamad Al Khazim Al Ghamdi ${ }^{\text {b }}$
${ }^{\text {a }}$ Natural Products Chemistry, Indian Institute of Chemical Technology, Hyderabad 500 007, India
${ }^{\mathrm{b}}$ Engineer Abdullah Baqshan for Bee Research, King Saudi University, Saudi Arabia

ARTICLE INFO

Article history:

Received 19 July 2013
Revised 8 August 2013
Accepted 11 August 2013
Available online 16 August 2013

Keywords:

Xyolide
MacMillan aminooxylation
Steglich esterification
Ring closing metathesis

Abstract

A stereoselective total synthesis of xyolide is described employing MacMillan α-hydroxylation, Steglich esterification, and ring closing metathesis as key steps. The use of organocatalytic MacMillan α-hydroxylation to construct two of the chiral centers of the xyolide makes this approach attractive.

© 2013 Elsevier Ltd. All rights reserved.

Nonenolides have emerged as attractive synthetic targets due to their potent biological activities. ${ }^{1}$ Many of these lactones are being produced by fungi, bacteria, and marine organisms. A few of them are isolated from plants or insects (pheromones).

The 10 -membered macrolides such as stagonolides A-I, ${ }^{2}$ decarestrictines A, D, and J, ${ }^{3}$ herbarumins I-III, ${ }^{4}$ and microcarpalide ${ }^{5}$ (Fig. 1) are known to exhibit potent biological activities such as antibacterial, antifungal, cytotoxic, and phytotoxic behavior which make them attractive synthetic targets. In particular, xyolide (1), a 10 -membered macrolide isolated from the Amazonian endophytic fungus, Xylaria feejeensis is important. The structure of $\mathbf{1}$ was established by ${ }^{1} \mathrm{D}$ and ${ }^{2} \mathrm{D}$ NMR and the absolute configuration was determined by exciton-coupled circular dichroism. The minimum inhibitory concentration (MIC) of xyolide against P. ultimum was $425 \mu \mathrm{M}$. ${ }^{6}$

In continuation of our interest on the total synthesis of biologically active molecules, ${ }^{7}$ herein we report the stereoselective total synthesis of xyolide employing n-nonanal as a cost-effective and readily available precursor. Our retrosynthetic analysis of xyolide 1 reveals that it could be synthesized by means of RCM of 14, which in turn could be prepared through the esterification of alkenoic acid $\mathbf{1 3}$ with alkenol 8 . The intermediates $\mathbf{1 3}$ and $\mathbf{8}$ could easily be accessed from the commercially available pentane-1,5diol 3 and n-nonanal 2, respectively (Scheme 1).

Accordingly, the synthesis of xyolide $\mathbf{1}$ began from n-nonanal $\mathbf{2}$, which was subjected to a sequential aminoxylation catalyzed by

[^0]L-proline at $-20^{\circ} \mathrm{C}$ followed by olefination to furnish the γ-butenolide 4 in 60% yield. ${ }^{8}$ Sharpless asymmetric dihydroxylation ${ }^{9}$ of γ-butenolide 4 with AD-mix- α in tert-butanol and water system gave the diol 5 in 94% yield. Protection of the diol with 2,2-dimethoxypropane in the presence of PPTS gave the lactone $\mathbf{6}$ which was then reduced with DIBAL-H to give the lactol 7 in 92% yield. Lactol 7 was subjected to one carbon Wittig homologation with methyltriphenylphosphonium iodide in the presence of $\mathrm{KO}^{t} \mathrm{Bu}$ to give the alkenol $\mathbf{8}$ in 82% yield (Scheme 2). ${ }^{10}$

Next, we focused on the synthesis of another key intermediate 13 which was commenced from pentane-1,5-diol 3 . Mono-protection of the diol $\mathbf{3}$ with BnBr in the presence of NaH in THF afforded

Xyolide (1)

Herbarumin II

Herbarumin I

decarestrictine J

Stagonolide A

microcarpalide

Figure 1. Examples of 10 -membered macrolides.

Scheme 1. Retrosynthetic analysis of xyolide.
the benzyl ether in 88% yield, which was further subjected to oxidation with IBX to give the aldehyde 9 in 87% yield. α-Aminooxylation of compound 9 with nitrasobenzene using D-proline followed by reduction with NaBH_{4} and subsequent cleavage of the aminooxy alcohol with $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ furnished the required diol 10 (98% ee, by HPLC analysis) in 60% yield. ${ }^{11}$ Treatment of the diol 10 with NaH and N -tosylimidazole gave the epoxide in 80% yield. The epoxide formed was treated with trimethylsulfonium iodide in the presence of n-BuLi in THF at $-20^{\circ} \mathrm{C}$ to give the desired allylic alcohol in 88% yield, ${ }^{12}$ which was then protected as its TBS ether $\mathbf{1 1}$ using TBSCl and imidazole. Compound 11 was treated with $\mathrm{Li} /$ naphthalene to afford the alcohol 12 in 90% yield. One-pot oxidation of compound 12 with TEMPO-BAIB afforded the acid 13 in 85% yield (Scheme 3).

Finally, we attempted the coupling of alcohol 8 with carboxylic acid 13 so as to construct a 10-membered ring via RCM reaction.

Under Steglich conditions (DCC/DMAP), the coupling of alcohol 8 with acid 13 gave the corresponding ester 14 in 85% yield. ${ }^{13}$ Removal of TBS ether using HF-pyridine followed by ring-closing metathesis of 14 using Grubbs' second generation catalyst ${ }^{14}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under reflux conditions for 6 h gave the 10 -membered macrolide 15 (exclusively as its E-isomer) in 80% yield. Esterifica-

Scheme 2. Reagents and conditions: (a) (i) PhNO, l-proline ($40 \mathrm{~mol} \%$), DMSO, $20^{\circ} \mathrm{C}$; (ii) $\left(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}, \mathrm{DBU}, \mathrm{LiCl}, \mathrm{THF},-20^{\circ} \mathrm{C}$ then $\mathrm{MeOH}, \mathrm{NH}_{4} \mathrm{Cl}$, $\mathrm{Cu}(\mathrm{OAc})_{2}, \mathrm{rt}, 24 \mathrm{~h}$; (b) AD-mix- α, t - $\mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}$ (1:1). (c) 2,2-DMP, PPTS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 89 \%$; (d) DIBAL-H, THF, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 92 \%$. (e) $\mathrm{CH}_{3} \mathrm{PPh}_{3} \mathrm{I}, \mathrm{KO}^{\dagger} \mathrm{Bu}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 82 \%$.

Scheme 3. Reagents and conditions: (a) (i) BnBr, NaH, THF, $0^{\circ} \mathrm{C}$ to rt., $6 \mathrm{~h}, 88 \%$. (ii) IBX, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, $4 \mathrm{~h}, 87 \%$; (b) PhNO, d-proline ($40 \mathrm{~mol} \%$), DMSO, rt , 30 min then $\mathrm{NaBH}_{4}, \mathrm{EtOH}$, then $\mathrm{CuSO}_{4}, \mathrm{MeOH}, 12 \mathrm{~h}, 60 \%$; (c) (i) NaH, N-tosylimidazole, 80%. (ii) $\mathrm{Me}_{3} \mathrm{SI}, n$-BuLi, THF, $-20^{\circ} \mathrm{C}, 88 \%$; (iii) TBSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \mathrm{~h}$, 95\%; (d) Li, naphthalene, $-20^{\circ} \mathrm{C}, 90 \%$; (e) TEMPO-BAIB, $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{H}_{2} \mathrm{O}$ (1:1) rt, 85%.

Scheme 4. Reagents and conditions: (a) DCC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 85 \%$; (b) (i) HFpyridine, THF, $0^{\circ} \mathrm{C}$ to rt, $10 \mathrm{~h}, 89 \%$; (ii) Grubbs' catalyst-II, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, $3 \mathrm{~h}, 80 \%$; (c) $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{3}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 89 \%$; (d) $2 \mathrm{~N} \mathrm{HCl}, \mathrm{THF}, 4 \mathrm{~h}, 73 \%$.
tion of the macrolide $\mathbf{1 5}$ with succinic anhydride ${ }^{15}$ followed by removal of the acetonide using 2 N HCl furnished the target molecule xyolide 1 in 73% yield (Scheme 4). The spectral data $\left({ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$ NMR, IR, $\left.[\alpha]_{\mathrm{D}}^{20}\right)$ of xyolide $\mathbf{1}$ were identical in all respects with the data reported in the literature. ${ }^{6}$

In summary, we have developed a concise and convergent approach for the total synthesis of xyolide in a highly stereoselective manner. MacMillan organocatalytic α-hydroxylation and asymmetric dihydroxylation are successfully employed to establish the chiral centers of xyolide.

Acknowledgments

P.S.R.K.R. and B.P.R. thank CSIR, New Delhi for the award of fellowships. J.S.Y. thanks CSIR, New Delhi for Bhatnagar Fellowship.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2013.08. 038.

References and notes

1. (a) Nicolaou, K. C.; Chen, J. S.; Dalby, S. M. Bioorg. Med. Chem. 2009, 17, 2290; (b) Hendrik, G.; Peter, J. S.; Ekaterina, E.; Stefan, K.; Gabriele, M. K. J. Nat. Prod. 2008, 71, 1651; (c) Piel, J. Nat. Prod. Rep. 2009, 26, 338; (d) Riatto, V. B.; Pilli, R. A.; Victor, M. M. Tetrahedron 2008, 64, 2279; (e) Surat, B.; Prasat, K.; Masahiko,
I.; Daraporn, P.; Morakot, T.; Yodhathai, T. J. Nat. Prod. 2001, 64, 965. and references therein.
2. (a) Evidente, A.; Cimmino, A.; Berestetskiy, A.; Mitina, G.; Andolfi, A.; Motta, A. J. Nat. Prod. 2008, 71, 31; (b) Evidente, A.; Cimmino, A.; Be restetskiy, A.; Andolfi, A.; Motta, A. J. Nat. Prod. 2008, 71, 1897; (c) Yuzikhin, O.; Mitina, G.; Berestetskiy, A. J. Agric. Food Chem. 2007, 55, 7707.
3. (a) Grabley, S.; Granzer, E.; Hütter, K.; Ludwig, D.; Mayer, M.; Thiericke, R.; Till, G.; Wink, J.; Philipps, S.; Zeeck, A. J. Antibiot. 1992, 45, 56; (b) Göhrt, A.; Zeeck, A.; Hütter, K.; Kirsch, R.; Kluge, H.; Thiericke, R. J. Antibiot. 1992, 45, 66.
4. (a) Rivero-Cruz, J. F.; Garcia-Aguieee, G.; Cerda-Garcia-Rojas, C. M.; Mata, R. Tetrahedron 2000, 56, 5337; (b) Rivero-Cruz, J. F.; Martha, M.; CerdaGarciaRojas, C. M.; Mata, R. J. Nat. Prod. 2003, 66, 511.
5. Ratnayake, A. S.; Yoshida, W. Y.; Mooberry, S. L.; Hemscheidt, T. Org. Lett. 2001, 3, 3479.
6. Baraban, E. G.; Morin, J. B.; Phillips, G. M.; Phillips, A. J.; Strobel, S. A.; Handelsman, J. Tetrahedron Lett. 2013, 54, 4058.
7. (a) Reddy, B. V. S.; Reddy, B. P.; Pandurangam, T.; Yadav, J. S. Tetrahedron Lett. 2011, 52, 2306; (b) Reddy, P. J.; Reddy, A. S.; Yadav, J. S.; Reddy, B. V. S.

Tetrahedron Lett. 2012, 53, 4051; (c) Kishore, Ch.; Reddy, A. S.; Yadav, J. S.; Reddy, B. V. S. Tetrahedron Lett. 2012, 53, 4551; (d) Yadav, J. S.; Reddy, Y. J.; Reddy, P. A. N.; Reddy, B. V. S. Org. Lett. 2013, 15, 546.
8. Devalankar, D. A.; Chouthaiwale, P. V.; Sudalai, A. Tetrahedron: Asymmetry 2012, 23, 240.
9. (a) Jacobsen, E. N.; Marko, I.; Mungall, W. S.; Schroeder, G.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968; (b) Kolb, H. C.; Van Nieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483-2547.
10. Srihari, P.; Kumaraswamy, B.; Shankar, P.; Ravishashidhar, V.; Yadav, J. S. Tetrahedron Lett. 2010, 51, 6174.
11. (a) Zhong, G. Angew. Chem., Int. Ed. 2003, 42, 4247; (b) Reddy, B. V. S.; Reddy, B. P.; Pandurangam, T.; Yadav, J. S. Tetrahedron Lett. 2011, 52, 2306.
12. Reddy, B. P.; Reddy, B. V. S.; Pandurangam, T.; Yadav, J. S. Tetrahedron Lett. 2012, 53, 5749.
13. Shimizu, T.; Masuda, T.; Hiramoto, K.; Nakata, T. Org. Lett. 2000, 2, 2153.
14. Grubbs, H. R.; Chang, S. Tetrahedron 1998, 54, 4413.
15. Kobayashi, Y.; Okui, H. J. Org. Chem. 2000, 65, 612.

[^0]: * Corresponding author. Fax: +91 4027160512.

 E-mail address: basireddy@iict.res.in (B.V.S. Reddy).

