With compliments of the Author

Syntheses of Aggregation Pheromones of the Palm Weevils Rhyncophorus vulneratus and R. phoenicis and of (+)-trans-Whiskey Lactone

J. S. Yadav, *a, ${ }^{\text {b }}$ C. Venkateshwar Rao, ${ }^{\text {a }}$ A. R. Prasad, ${ }^{\text {a }}$ Ahmad Al Khazim Al Ghamdi ${ }^{\text {b }}$
${ }^{\text {a }}$ Division of Organic Chemistry I, CSIR, Indian Institute of Chemical Technology, Hyderabad, 500 007, India
${ }^{\text {b }}$ Engineer Abdullah Baqshan for Bee Research, King Saud University, Saudi Arabia
Fax +91(40)27160512; E-mail: yadav@iict.res.in
Received 6 August 2011; revised 20 September 2011

Abstract

S, 4 S)\)-3-Methyloctan-4-ol, (4S,5S)-4-methylnonan-5ol, and (+)-trans-whiskey lactone [(4S,5R)-5-butyl-4-methyldihy-drofuran- $2(3 H)$-one] were synthesized stereoselectively by using a radical cyclization reaction as a key step. All three molecules were synthesized from a common cyclic acetal intermediate.

Key words: alcohols, pheromones, lactones, radical reactions, stereoselective synthesis

Insect pheromones play a major role in pest-control strategies and are considered to be potential useful tools in integrated pest management, an ecofriendly and environmentally safe agricultural technique that is practiced worldwide. Palm weevils are obnoxious pests of coconut and oil palm crops. Most species produce a single isomer of a methyl-branched secondary alcohol as an aggregation pheromone. Rochat and co-workers ${ }^{1}$ isolated and identified $(4 S, 5 S)$-4-methylnonan-5-ol (1; Figure 1) as the major component of the aggregation pheromone of the male Rhynchophorus vulneratus, the Asian palm weevil; the same compound is also a key component of the male pheromones of the taxonomically related Metamasous hemipterus (L.), a weevil of the genus Rhynchophornae. R. phoenicis (F.), ${ }^{2}$ the African palm weevil, secretes ($3 S, 4 S$)-3-methyloctan-4-ol (2), whereas R. cruentatus (F.), ${ }^{3}$ the palmetto weevil, secretes ($4 S, 5 S$)-5-methyloctan-4-ol. The absolute configuration of the naturally occurring stereoisomer of 4-methylnonan-5-ol (1) was established by Oehlschlager and co-workers ${ }^{4}$ to be $(4 S, 5 S)$, and Mori and co-workers ${ }^{5}$ synthesized the compound from an epoxy alcohol, whereas Gil and co-workers ${ }^{6}$ prepared it by using chiral auxiliary units, according to Evans' method.

Figure 1 (4S,5S)-4-methylnonan-5-ol (1), (3S,4S)-3-methyloctan-4-ol (2), and (3) (+)-trans-whiskey lactone (3)

SYNTHESIS 2011, No. 23, pp 3894-3898
Advanced online publication: 27.10.2011
DOI: 10.1055/s-0031-1289579; Art ID: Z77911SS
© Georg Thieme Verlag Stuttgart • New York

Structurally simple γ-butyrolactones are widespread naturally occurring substances that occur not only as sex pheromones, ${ }^{7}$ but also as key flavor components. ${ }^{8}$ The biological activity of these substances is strictly dependent on the absolute configuration of the chiral C-4 carbon atom attached to the lactone ring. (+)-trans-Whiskey lactone [($4 S, 5 R$)-5-butyl-4-methyldihydrofuran-2(3H)-one] and cis-whiskey lactone [(4S,5S)-5-butyl-4-methyldihy-drofuran-2(3H)-one] were identified as key aroma components of oak-aged alcoholic beverages, such as whiskey, brandy, or wine. ${ }^{9 \mathrm{a}}$ The two compounds, which are originally components of the oak used in barrels for the alcoholic beverages, are extracted slowly from the oak barrels into the alcoholic beverage during the maturing process. The absolute configuration of the natural transand cis-whiskey lactones were confirmed to be $(4 S, 5 R)$ and $(4 S, 5 S)$, respectively, by Masuda and Nashimura. ${ }^{9 b}$ Although several syntheses of optically active trans-whiskey lactone $\mathbf{3}$ have been reported, most use either a stoichiometric amount of a chiral source as a starting material ${ }^{10}$ or require chiral auxiliaries. ${ }^{11}$
As a part of our ongoing work on the synthesis of pheromones, ${ }^{12}$ we stereoselectively synthesized (+)-trans-whiskey lactone (3) and the palm weevil pheromones ($3 S, 4 S$)-3-methyloctan-4-ol (2) and (4S,5S)-4-methylnonan-5-ol (1) through radical cyclization reactions. Our retrosynthetic analysis is shown in Scheme 1.

Scheme 1 Retrosynthetic strategy

Our synthesis of (4S,5S)-4-methylnonan-5-ol (1), (3S, $4 S$)-3-methyloctan-4-ol (2), and (+)-trans-whiskey lactone (3) began from the readily available allyl alcohol 4 (Scheme 2). Alcohol 4 gave the epoxy alcohol 5 when treated under Sharpless asymmetric epoxidation conditions. ${ }^{13}$ Epoxy alcohol 5 was converted into the corresponding iodide 6 by treatment with diiodine, triphenylphosphine, and imidazole at $0{ }^{\circ} \mathrm{C} .{ }^{14}$ Dehydro-
iodination and ring cleavage of iodide 6 by treatment with zinc and sodium iodide in refluxing methanol gave the desired chiral allylic alcohol 7. ${ }^{15}$
Treatment of allylic alcohol 7 with N -bromosuccinimide and ethyl vinyl ether in dichloromethane gave the required bromo acetal 8. ${ }^{16}$ As expected, on treatment with tributylstannane in refluxing toluene with $2,2^{\prime}$-azobis(isobutyronitrile) as the radical initiator, acetal 8 underwent a standard 5-exo trig cyclization to give the cyclic ethyl acetal 9 with a preferential anti-geometry of the resulting new stereogenic center. ${ }^{17}$ The absolute stereochemistry of the new stereogenic center was confirmed by oxidizing the cyclic acetal with Jones reagent to give (+)-transwhiskey lactone (3). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and optical rotation of $\mathbf{3}$ matched the reported data for (+)-transwhiskey lactone. ${ }^{10 \mathrm{~g}}$
Hydrolysis of ethyl acetal 9 in refluxing 80% acetic acid gave the lactol 10, which on one-carbon Wittig olefination afforded the homologated derivative 11 in 85% yield. The ${ }^{13} \mathrm{C}$ NMR spectrum and HPLC data confirmed the homogeneity of the new stereogenic center created during the free-radical cyclization. The double bond was reduced in the presence of palladium(II) hydroxide under a hydrogen atmosphere to give the alcohol 12. Mitsunobu inversion ${ }^{18}$ of the free alcohol 12 gave the desired pheromone $\mathbf{1}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and the optical rotation of this

Scheme 2 Reagents and conditions: (i) D-(-)-DIPT, Ti(O-i-Pr) ${ }_{4}, t-$ $\mathrm{BuOOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$; (ii) $\mathrm{I}_{2}, \mathrm{Ph}_{3} \mathrm{P}$, imidazole, $\mathrm{MeCN}-\mathrm{Et}_{2} \mathrm{O}$ (1:3); (iii) $\mathrm{Zn}, \mathrm{NaI}, \mathrm{MeOH}$, reflux; (iv) $\mathrm{NBS}, \mathrm{CH}_{2}=\mathrm{CHOEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (v) $\mathrm{Bu}_{3} \mathrm{SnH}$, toluene, AIBN, $80^{\circ} \mathrm{C}$; (vi) Jones's reagent, acetone; (vii) 80% acetic acid, reflux; (viii) $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{Me} \mathrm{I}^{-}$, THF, $\mathrm{BuLi},-78^{\circ} \mathrm{C}$; (ix) $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{H}_{2}, \mathrm{MeOH}$; (x) DEAD, $\mathrm{Ph}_{3} \mathrm{P}$, 4-nitrobenzoic acid, then $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$.
compound were in complete agreement with those of the natural product. ${ }^{5 a}$
Treatment of the cyclic acetal 9 with propane-1,3-dithiol and boron trifluoride etherate ${ }^{19}$ at $0{ }^{\circ} \mathrm{C}$ gave the cyclic thioacetal 13, which on treatment with activated Raney nickel ${ }^{20}$ in refluxing methanol gave alcohol 14 in 80% yield. Mitsunobu inversion of the free hydroxyl group by using diethyl azodicarboxylate, triphenylphosphine, and 4-nitrobenzoic acid gave the target molecule ($3 S, 4 S$)-3-methyloctan-4-ol (2). The spectral data and rotation values matched those of the natural compound. ${ }^{2}$ The two pheromones $\mathbf{1}$ and $\mathbf{2}$ exhibited excellent electrophysical activities in electroactinographic studies.

Scheme 3 Reagents and conditions: (i) $\mathrm{HS}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (ii) Raney $\mathrm{Ni}, \mathrm{MeOH}$, reflux; (iii) $\mathrm{DEAD}, \mathrm{Ph}_{3} \mathrm{P}$, 4-nitrobenzoic acid, THF, then $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH .

To summarize, we have successfully developed a concise, efficient, and highly stereoselective synthesis of the pheromones ($4 S, 5 S$) 4-methylnonan-5-ol (1) and (3S,4S) 3-methyloctan-4-ol (2) and of (+)-trans-whiskey lactone (3) by using radical cyclization as the key step. The two pheromones 1 and 2 exhibited excellent electrophysiological activity in electroactinographic studies, and further field trials are in progress.

Optical rotations were measured with a Jasco DIP-360 polarimeter at $20^{\circ} \mathrm{C}$, and IR spectra were recorded on a Perkin-Elmer FT-IR spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded using a Varian Gemini (200 MHz), a Varian Inova (500 MHz), or a Bruker Avance $(300 \mathrm{MHz})$ spectrometer with TMS as an internal standard in CDCl_{3}. EI mass spectra were recorded on Micromass VG-7070 H. High-resolution mass spectra were recorded on a VG-7070 H spectrometer. Elemental analyses were performed on a Vario EL analyzer. Electroactinographic equipment was obtained from Syntech GmbH (Kirchzarten, Germany). GC-MS studies were performed on an Agilent Technologies System 6890N. The progress of all the reactions was monitored by TLC on glass plates precoated with silica gel $60 \mathrm{~F}_{254}$ to a thickness of 0.5 mm (Merck). Column chromatography was on columns of silica gel 60-120 mesh with EtOAc-hexane as the eluent. All reactions were carried out under an inert atmosphere unless stated otherwise, following standard syringesepta techniques. All the solvents were dried by using the standard procedures.
[(2R,3R)-3-Butyloxiran-2-yl]methanol (5)
A freshly flame-dried, double-necked, round-bottomed flask was charged with activated $4-\AA$ MS $(\sim 5 \mathrm{~g})$ and anhyd $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(0.358 \mathrm{~g}, 1.26 \mathrm{mmol})$ and $\mathrm{D}-(-)-\mathrm{DIPT}(0.355$ $\mathrm{g}, 1.51 \mathrm{mmol}$) were added and the mixture was stirred for 20 min . A soln of allylic alcohol $4(2.88 \mathrm{~g}, 25.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$
was added, followed after an interval of 20 min by a 3.7 M soln of t - BuOOH in toluene $(13.6 \mathrm{~g}, 50.5 \mathrm{mmol})$. Stirring was continued until the reaction was complete $(4 \mathrm{~h})$. The mixture was then warmed to $0^{\circ} \mathrm{C}$, quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, and stirred vigorously for 30 min. It was then filtered through a sintered funnel, and the filtrate was stirred with 20% aq $\mathrm{NaOH}(5 \mathrm{~mL})$ saturated with solid NaCl . The biphasic soln was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give a crude residue that was purified by column chromatography to give a colorless oil; yield: $2.7 \mathrm{~g}(85 \%) ;[\alpha]_{\mathrm{D}}{ }^{25}+26.87\left(c 0.9, \mathrm{CHCl}_{3}\right)$.
IR (neat): 3550, 2929, 2860, 1602, 1453, 1276, 1096, 912, $699 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=0.95(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.10-$ $1.50(\mathrm{~m}, 6 \mathrm{H}), 2.80-3.00(\mathrm{~m}, 2 \mathrm{H}), 3.50-4.00(\mathrm{~m}, 2 \mathrm{H})$.
MS (EI): $m / z=130\left[\mathrm{M}^{+}\right]$.
Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 64.58; H, 10.84; Found: C, 64.56; H, 10.81 .
(2R,3S)-2-Butyl-3-(iodomethyl)oxirane (6)
Imidazole ($3.27 \mathrm{~g}, 51.9 \mathrm{mmol}$), $\mathrm{I}_{2}(10.5 \mathrm{~g}, 41.5 \mathrm{mmol})$, and $\mathrm{Ph}_{3} \mathrm{P}$ $(10.88 \mathrm{~g}, 41.5 \mathrm{mmol})$ were added successively to a soln of alcohol $5(2.7 \mathrm{~g}, 20.7 \mathrm{mmol})$ in $1: 3 \mathrm{MeCN}-\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under N_{2}, and the mixture was stirred for 20 min . The resulting soln was diluted with cool $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and filtered through a sintered funnel. The residue was washed with anhyd $\mathrm{Et}_{2} \mathrm{O}(2 \times 25 \mathrm{~mL})$ and the combined filtrates were concentrated under reduced pressure. The crude product was passed through a pad of silica gel to give a colorless liquid; yield: $4.56 \mathrm{~g}(92 \%) ;[\alpha]_{\mathrm{D}}{ }^{25}+6.5\left(c 1.5, \mathrm{CHCl}_{3}\right)$.
IR (neat): 3087, 2921, 1496, 1455, 1092, 1027, $894 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=0.95(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.10-$ $1.50(\mathrm{~m}, 6 \mathrm{H}), 2.80-3.00(\mathrm{~m}, 2 \mathrm{H}), 3.50-4.00(\mathrm{~m}, 2 \mathrm{H})$.
$\mathrm{MS}(\mathrm{EI}): m / z=240\left[\mathrm{M}^{+}\right]$.
Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{IO}: \mathrm{C}, 35.02$; H, 5.46; Found: C, 35.00; H, 5.45.

(3R)-Hept-1-en-3-ol (7)

A mixture of iodo compound $6(4.5 \mathrm{~g}, 18.8 \mathrm{mmol}), \mathrm{NaI}(5.64 \mathrm{~g}, 37.6$ mmol), and freshly activated $\mathrm{Zn}(2.98 \mathrm{~g}, 47.0 \mathrm{mmol})$ in anhyd $\mathrm{MeOH}(30 \mathrm{~mL})$ was refluxed for 8 h under N_{2}. The soln was filtered and the residue was washed with $\mathrm{MeOH}(2 \times 15 \mathrm{~mL})$. The filtrates were combined and concentrated. The residue was taken up in EtOAc (30 mL), washed successively with $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and brine $(1 \times 10 \mathrm{~mL})$, and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent gave a residue that was purified by column chromatography to give a colorless liquid; yield: $1.93 \mathrm{~g}(90 \%) ;[\alpha]_{\mathrm{D}}{ }^{25}-21.5$ (c 1.04, $\mathrm{EtOH})\left\{\mathrm{Lit}^{21}[\alpha]_{\mathrm{D}}{ }^{21}-21.6\right.$ (c 1.02) $\}$.
IR (neat): $3440,3031,2862,1954,1602,1493,1207,1091 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=0.94(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-$ $1.41(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.55(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{q}, J=3.0,9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.10-5.25$ (dd, $J=8.2,14.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.80-5.91(\mathrm{~m}, 1 \mathrm{H})$.
$\operatorname{MS}(\mathrm{EI}): m / z=114\left[\mathrm{M}^{+}\right]$.
GC-MS: $m / z=115[\mathrm{M}+\mathrm{H}]^{+}$.

(3R)-3-(2-Bromo-1-ethoxyethoxy)hept-1-ene (8)

NBS ($4.34 \mathrm{~g}, 24.1 \mathrm{mmol}$) was added to a stirred soln of $\mathrm{CH}_{2}=\mathrm{CHO}$ Et ($3.15 \mathrm{~g}, 43.8 \mathrm{mmol}$) and allyl alcohol $7(2.5 \mathrm{~g}, 21.9 \mathrm{mmol})$ in anhyd $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred until the reaction was complete ($8-9 \mathrm{~h}$). The mixture was washed with successively with $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$ and brine $(1 \times 30 \mathrm{~mL})$ then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The residue was purified by chromatography to give a colorless liquid; yield: $4.7 \mathrm{~g}(81 \%)$.
IR (neat): 2932, 1423, 1114, 1026, 927, $675 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=0.95(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-$ $1.60(\mathrm{~m}, 9 \mathrm{H}), 3.30(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~m}, 1$ H), $4.70(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~m}, 2 \mathrm{H}), 5.60-5.80(\mathrm{~m}, 1 \mathrm{H})$.

MS (EI): $m / z=267[\mathrm{M}+2 \mathrm{H}]^{+}$.
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{BrO}_{2}$: C, 49.82; H, 7.98; Found: C, 49.30; H, 8.22.
(2R,3S)-2-Butyl-5-ethoxy-3-methyltetrahydrofuran (9)
A soln of $\mathrm{Bu}_{3} \mathrm{SnH}(4.92 \mathrm{~g}, 16.9 \mathrm{mmol})$ and a catalytic amount of AIBN in toluene (5 mL) was added to a soln of bromoacetal 8 (4.5 $\mathrm{g}, 16.9 \mathrm{mmol}$) in refluxing anhyd toluene (35 mL) under N_{2}. After 2 h , the soln was cooled to r.t. and passed through a column of silica gel column to give a colorless oil; yield: $2.82 \mathrm{~g}(90 \%)$.
IR (neat): $2929,2870,1606,1455,1372,1097,991,795,697 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=0.91(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.62(\mathrm{~m}, 8 \mathrm{H}), 2.10$ (m, 1 H), 3.28-3.49 (m, 2 H), $3.70(\mathrm{~m}, 1 \mathrm{H}), 4.90-5.09(\mathrm{~m}, 1 \mathrm{H})$.
MS (EI): $m / z=188\left[\mathrm{M}^{+}\right]$.
(4S,5R)-5-Butyl-4-methyldihydrofuran-2(3H)-one [(+)-transWhiskey Lactone] (3)
Jones's reagent was added dropwise to an ice-cooled soln of cyclic acetal $9(400 \mathrm{mg})$ in acetone $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ until the color of the reagent persisted. The mixture was then stirred for 1 h at r.t., then concentrated under reduced pressure to remove acetone. The resulting residue was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(2 \times 20 \mathrm{~mL})$. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by column chromatography to give a colorless oil; yield: $240 \mathrm{mg}(80 \%) ;[\alpha]_{\mathrm{D}}{ }^{25}+76.8(c 1.01, \mathrm{MeOH}),\left\{\right.$ Lit. $^{10 \mathrm{~g}}[\alpha]_{\mathrm{D}}{ }^{19}+79(c$ $1.04, \mathrm{MeOH})\}$.
IR (neat): $2933,1781,1458,1211,1171,985,476 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=0.95(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}$, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.75(\mathrm{~m}, 6 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.62(\mathrm{~m}$, $1 \mathrm{H}), 3.99(\mathrm{dt}, J=4.0,7.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=13.89,17.65,22.55,28.01,33.5$, 36.19, 37.21, 87.56, 176.56.
$\mathrm{MS}(\mathrm{EI}): m / z=156\left[\mathrm{M}^{+}\right]$.
HRMS (EI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}: 156.2265$; found: 156.2267 .

(4S,5R)-5-Butyl-4-methyltetrahydrofuran-2-ol (10)

A soln of ethyl acetal $9(1.5 \mathrm{~g}, 7.5 \mathrm{mmol})$ in 80% aq $\mathrm{AcOH}(15 \mathrm{~mL})$ was refluxed for 4 h then cooled to $0^{\circ} \mathrm{C}$, neutralized with solid NaHCO_{3}, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The organic extracts were washed successively with $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and brine $(1 \times 10 \mathrm{~mL})$ then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The residue was purified by column chromatography to give a colorless liquid; yield: 0.96 (76\%).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=0.95(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{t}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.62(\mathrm{~m}, 6 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.40(\mathrm{~m}$, $2 \mathrm{H}), 3.45$ (m, 1 H$), 3.92$ (br s, 1 H), 4.85-4.99 (m, 1 H$)$.

MS (EI): $m / z=158\left[\mathrm{M}^{+}\right]$.

(4S,5R)-4-Methylnon-1-en-5-ol (11)

t - $\mathrm{BuOK}(1.41 \mathrm{~g}, 12.6 \mathrm{mmol})$ was added to $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{Me} \mathrm{I}^{-}(6.12 \mathrm{~g}, 15.1$ mmol) in anhyd THF (40 mL) under N_{2} at $-78^{\circ} \mathrm{C}$. After 30 min , a soln of furanol $11(0.8 \mathrm{~g}, 5.0 \mathrm{mmol})$ in anhyd THF (5 mL) was added from a cannula to the orange-yellow turbid mixture, and the resulting mixture was stirred for 8 h while the temperature increased to $0{ }^{\circ} \mathrm{C}$. The reaction was then quenched with sat. aq $\mathrm{NH}_{4} \mathrm{Cl}(15$ $\mathrm{mL})$. The mixture was filtered through a sintered funnel and the residue was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic filtrates were washed successively with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and brine (25 $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and filtered. The residue was purified by col-
umn chromatography to give a colorless liquid; yield: 0.59 g (76.2\%); $[\alpha]_{\mathrm{D}}{ }^{25}+18.1$ (c 1.3, MeOH).

IR (neat): $3417,2958,2932,2862,1467,1233,1023,878,755,640$ cm^{-1}.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=0.88(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.23-1.49(\mathrm{~m}, 6 \mathrm{H}), 1.6(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H})$, $2.30(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 4.90-5.50(\mathrm{~m}, 2 \mathrm{H}), 5.68-5.83(\mathrm{~m}, 1$ H).
${ }^{13} \mathrm{C} \mathrm{NMR}^{(}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=14.06,15.41,22.75,28.09,33.37$, 36.78, 38.64, 75.62, 115.85, 137.57.

MS (EI): $m / z=155[\mathrm{M}-\mathrm{H}]^{+}$.
GC-MS: $m / z=155[\mathrm{M}-\mathrm{H}]^{+}$.

(4S,5R)-4-Methylnonan-5-ol (12)

$10 \% \mathrm{Pd}(\mathrm{OH})_{2}(50 \mathrm{mg})$ was added to a soln of enol $11(500 \mathrm{mg})$ in anhyd EtOAc (5 mL), and the mixture was stirred under H_{2} until the starting material was completely consumed. The catalyst was removed by filtration through a pad of Celite, and the filtrate was concentrated under reduced pressure at low temperature to give a colorless oil; yield: $470 \mathrm{mg}(92.8 \%)$; $[\alpha]_{\mathrm{D}}{ }^{25}+9.6\left(c 0.60, \mathrm{EtO}_{2}\right)$.
IR (neat): 3417, 2958, 2932, 2862, 1467, 1233, 1023, 878, 755, 640 cm^{-1}.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=0.87(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.52(\mathrm{~m}, 11 \mathrm{H})$, 1.55 (br s, 1 H$), 3.35(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=14.08,14.40,15.2,20.4,22.8,28.3$, 33.05, 34.1, 38.55, 75.2.

MS (EI): $m / z=157[\mathrm{M}-\mathrm{H}]^{+}$.
GC-MS: $m / z=157[\mathrm{M}-\mathrm{H}]^{+}$.

(4S,5S)-4-Methylnonan-5-ol (1)

A soln of $\mathrm{Ph}_{3} \mathrm{P}(1.32 \mathrm{~g}, 5.0 \mathrm{mmol})$ and DEAD $(0.90 \mathrm{~g}, 5.1 \mathrm{mmol})$ in anhyd THF (7 mL) was added to a soln of alcohol $12(400 \mathrm{mg}, 2.5$ mmol) in anhyd THF (7 mL) at $0^{\circ} \mathrm{C}$. After 30 min , 4$\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}(0.42 \mathrm{~g}, 5.05 \mathrm{mmol})$ was added and the mixture was stirred until the reaction was complete. The mixture was then washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$, extracted with EtOAc $(2 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. The crude product was purified by flash column chromatography, and the resulting ester was deprotected by treatment with $\mathrm{K}_{2} \mathrm{CO}_{3}(0.698$ $\mathrm{mg}, 5.06 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$ for 3 h to give the free alcohol. Residual solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ was filtered off, and the filtrate was concentrated under reduced pressure to give a residue that was purified by column chromatography to give a colorless liquid; yield: $250 \mathrm{mg}(62.5 \%) ;[\alpha]_{\mathrm{D}}{ }^{25}-25.4\left(c 1.25, \mathrm{Et}_{2} \mathrm{O}\right)\left\{\right.$ Lit. $^{5 \mathrm{a}}[\alpha]_{\mathrm{D}}{ }^{19}-26.5$ (c $\left.\left.88, \mathrm{Et}_{2} \mathrm{O}\right)\right\}$.
IR (KBr): 3380, 2980, 2932, 2875, 1461, 1118, 1001, $643 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=0.86(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}$, $J=6.78 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=6.72 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.42(\mathrm{~m}, 10 \mathrm{H})$, 1.42-1.46 (m, 1 H$), 1.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.50(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=13.8,14.1,14.2,20.5,22.85,28.5$, 34.1, 35.8, 38.0, 75.2.

MS (EI): $m / z=158\left[\mathrm{M}^{+}\right]$.
GC-MS: $m / z=158\left[\mathrm{M}^{+}\right]$.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 75.88$; H, 14.01; Found: C, 75.91; H, 14.08.

(2S,3R)-1-(1,3-Dithian-2-yl)-2-methylheptan-3-ol (13)

A soln of cyclic acetal $9(600 \mathrm{mg}, 3.2 \mathrm{mmol})$, in anhyd $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was combined with an equimolar amount of propane-1,3-dithiol (0.348
$\mathrm{g}, 3.2 \mathrm{mmol}$) at r.t. The mixture was immediately cooled in an ice bath and then $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.045 \mathrm{~g}, 32 \mathrm{mmol})$ was added. The mixture was then allowed to warm to r.t. and, when the reaction was complete, washed successively with $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL}), 10 \%$ aq $\mathrm{KOH}(15$ $\mathrm{mL})$, and $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ then dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$. Evaporation of the solvent and purification by column chromatography gave a colorless liquid product; yield: $500 \mathrm{mg}(62.5 \%) ;[\alpha]_{\mathrm{D}}{ }^{25}-10.2$ (c 1.01, MeOH).

IR (neat): 3446, 2931, 1457, 1274, 983, $475 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=0.92(\mathrm{t}, J=6.69 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.65(\mathrm{~m}, 8 \mathrm{H}), 1.80-1.95(\mathrm{~m}, 3 \mathrm{H}), 2.08-2.19$ (m, 1 H), 2.75-2.85 (m, 4 H$), 3.40(\mathrm{~m}, 1 \mathrm{H}), 4.00-4.11(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=14.01,15.8,22.6,25.99,28.1$, $30.13,30.5,33.4,35.5,37.4,45.64,75.7$.

GC-MS: $m / z 248[\mathrm{M}]^{+}$.
HRMS: m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~S}_{2} \mathrm{O}: 248.4525$, found: 248.4521 .

(3S,4R)-3-Methyloctan-4-ol (14)

A soln of thioacetal $13(450 \mathrm{mg} 1.8 \mathrm{mmol})$ in $\mathrm{EtOH}(15 \mathrm{~mL})$ was added to activated Raney $\mathrm{Ni}(900 \mathrm{mg})$ in $\mathrm{EtOH}(15 \mathrm{~mL})$, and the mixture was refluxed under N_{2} until the starting material was consumed. The mixture was then cooled to r.t., filtered, and purified by column chromatography to give a colorless liquid; yield: 300 mg (76.9\%) ; $[\alpha]_{\mathrm{D}}{ }^{25}+10.2$ (c 1.02, EtO_{2}).

IR (neat): 3370, 2960, 1461, 1317, 1001, $643 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=0.80-1.10(\mathrm{~m}, 9 \mathrm{H}), 1.20-1.82(\mathrm{~m}$, $9 \mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta=12.01,14.2,14.89,22.91,24.91$, 28.6, 33.2, 39.5 and 75.9.

GC-MS: $m / z=143[\mathrm{M}-\mathrm{H}]^{+}$.
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 74.93$; H, 13.97; Found: C, 74.85; H, 13.99.
(3S,4S)-3-Methyloctan-4-ol (2)
A soln of $\mathrm{Ph}_{3} \mathrm{P}(0.72 \mathrm{~g}, 2.7 \mathrm{mmol})$ and $\operatorname{DEAD}(0.48 \mathrm{~g}, 2.7 \mathrm{mmol})$ in anhyd THF (7 mL) was added to a soln of alcohol $\mathbf{1 4}(200 \mathrm{mg}, 1.3$ mmol) in anhyd THF (7 mL) at $0^{\circ} \mathrm{C}$. After 30 min , 4$\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}(0.46 \mathrm{~g}, 2.7 \mathrm{mmol})$ was added and the mixture was stirred until the reaction was complete. The mixture was then washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(2 \times 20$ $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. The crude product was purified by flash column chromatography, and the resulting ester was deprotected by treatment with $\mathrm{K}_{2} \mathrm{CO}_{3}(0.38$ $\mathrm{g}, 2.77 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$ for 3 h to give the free alcohol. Residual solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ was filtered off, and the filtrate was concentrated under reduced pressure to give a residue that was purified by column chromatography to give a colorless liquid; yield: $120 \mathrm{mg}(60 \%) ;[\alpha]_{\mathrm{D}}{ }^{25}-20.2\left(c 1.1, \mathrm{Et}_{2} \mathrm{O}\right)\left\{\mathrm{Lit}^{2}{ }^{[}[\alpha]_{\mathrm{D}}{ }^{19}-20.7\right.$ (c 1.01, $\left.\left.\mathrm{Et}_{2} \mathrm{O}\right)\right\}$.
IR (neat): 3380, 2980, 2932, 2875, 1461, 1118, $643 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=0.86(\mathrm{~d}, J=6.08 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}$, $J=6.78 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=6.72 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-1.16(\mathrm{~m}, 1 \mathrm{H})$, $1.25-1.42(\mathrm{~m}, 8 \mathrm{H}), 1.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=11.9,13.2,14.1,22.8,26.1,28.5$, 34.3, 40.0, 74.9.

MS (EI): $m / z=144\left[\mathrm{M}^{+}\right]$.
GC-MS: $m / z=143[\mathrm{M}+1]^{+}$.
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 74.93$; H, 13.97; Found: C, 74.88; H, 14.03.

Acknowledgment

C.V.R. thanks CSIR, New Delhi for the award of a fellowship. The authors acknowledge partial support from King Saud University for Global Research Network for Organic Synthesis (GRNOS).

References

(1) Rochat, D.; Malosse, C.; Lettere, M.; Ramirez-Lucas, P.; Einhorn, J.; Zagatti, P. C. R. Acad. Sci., Ser. II 1993, 316, 1737.
(2) Mori, K.; Kiyota, H.; Rochat, D. Liebigs Ann. Chem. 1993, 865.
(3) Weissling, T. J.; Giblin-Davis, R. M.; Gries, G.; Perez, A. L.; Pierce, H. D. Jr.; Oehlschlager, A. C. J. Chem. Ecol. 1994, 20, 505.
(4) Perez A. L., Gries R., Gries G., Hallett R. H., Oehlschlager A. C., Pierce H. D. Jr., Gonzalez L. M., Borden J. H., GiblinDavis R. M.; In Abstracts of Papers, Tenth Annual Meeting of the International Society of Chemical Ecology, Tampa, FL (USA), July 31-August 4, 1993; p. 54.
(5) (a) Mori, K.; Kiyota, H.; Malosse, C.; Rochat, D. Liebigs Ann. Chem. 1993, 1201. (b) Mori, K.; Murata, N. Liebigs Ann. 1995, 697.
(6) Odriozola, M. J.; Garcia, M. J.; González, A.; Gil, P. Tetrahedron: Asymmetry 1999, 10, 4627.
(7) (a) Ohloff, G. Fortschr. Chem. Org. Naturst. 1978, 35, 431. (b) Ho, T.-1. Synth. Commun. 1983, 13, 341.
(8) (a) Brand, J. M.; Young, J. C.; Silverstein, R. M. Fortschr. Chem. Org. Naturst. 1979, 37, 1. (b) Mori, K.; Ebata, T.; Takechi, S. Tetrahedron 1984, 40, 1761.
(9) (a) Otsuka, K.; Zenibayashi, Y.; Itoh, M.; Totsuka, A. Agric. Biol. Chem. 1974, 50, 485; and references cited therein. (b) Masuda, M.; Nishimura, K. Chem. Lett. 1981, 1333.
(10) (a) Marino, J. P.; de la Pradilla, R. F. Tetrahedron Lett. 1985, 26, 5381. (b) Gunther, C.; Mosandl, A. Liebigs Ann. Chem. 1986, 12, 2112. (c) Beckmann, M.; Hildebrandt, H.; Winterfeldt, E. Tetrahedron: Asymmetry 1990, 1, 335. (d) Sharma, G. V.; Vepachedu, S. R.; Chandrasekhar, S. Synth. Commun. 1990, 20, 3403. (e) Miata, O.; Shinada, T.; Kawakami, N.; Taji, K.; Ninomiya, I.; Naito, T.; Date, T.;

Okamura, K. Chem. Pharm. Bull. 1992, 40, 2579.
(f) Zschage, O.; Hoppe, D. Tetrahedron 1992, 48, 5657.
(g) Ebata, T.; Matsumoto, K.; Yoshikoshi, H.; Koseki, K.; Kawakami, H.; Okano, K.; Matsushita, H. Heterocycles 1993, 36, 1017. (h) Katsuji, I.; Yoshitake, M.; Katsuki, T. Tetrahedron 1996, 52, 3905. (i) Hisashi, N.; Katsuji, I.; Tsutomu, K. Tetrahedron: Asymmetry 1998, 9, 1165.
(11) (a) Bloch, R.; Gilbert, L. J. Org. Chem. 1987, 52, 4603.
(b) Taber, D. F.; Houze, J. B. J. Org. Chem. 1994, 59, 4004.
(c) Pai, Y.-C.; Fang, J.-M.; Wu, S.-H. J. Org. Chem. 1994, 59, 6018. (d) Takahata, H.; Uchida, Y.; Momose, T. Tetrahedron Lett. 1994, 35, 4123. (e) Takahata, H.; Uchida, Y.; Momose, T. J. Org. Chem. 1995, 60, 5628.
(12) (a) Yadav, J. S.; Jagan Reddy, E.; Ramalingam, T. New J. Chem. 2001, 25, 223. (b) Yadav, J. S.; Valli, M. Y.; Prasad, A. R. Tetrahedron 1998, 54, 7551. (c) Yadav, J. S.; Reddy, K. V.; Chandrashekar, S. Synth. Commun. 1998, 28, 4249. (d) Yadav, J. S.; Deshpande, P. K. Tetrahedron 1992, 48, 4465. (e) Yadav, J. S.; Rao, E. S. Synth. Commun. 1989, 19, 705. (f) Yadav, J. S.; Deshpande, P. K.; Reddy, E. R. Synth. Coттии. 1989, 19, 125.
(13) Gao, Y.; Klunder, J. M.; Hanson, R. M.; Masamune, H.; Ko, S. Y.; Sharpless, K. B. J. Am. Chem. Soc 1987, 109, 5765.
(14) Garegg, P. J.; Samuelson, B. J. Chem. Soc., Perkin Trans. 1 1980, 2866.
(15) Ueno, Y.; Moriya, O.; Chino, K.; Watanabe, M.; Okwara, M. J. Chem. Soc., Perkin Trans. 1 1986, 1351.
(16) Nicolaou, K. C.; Duggan, M. E.; Ladduwahetty, J. Tetrahedron Lett. 1984, 25, 2069.
(17) (a) Yadav, J. S.; Gadgil, V. R. J. Chem. Soc., Chem. Commun. 1989, 23, 1824. (b) Stork, G.; Mook, R. Jr.; Biller, S. A.; Rychnovsky, S. D. J. Am. Chem. Soc. 1983, 105, 3741. (c) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734.
(18) Mitsunobu, O. Synthesis 1981, 1.
(19) Seebach, D.; Corey, E. J. J. Org. Chem. 1975, 40, 231.
(20) Fujisawa, T.; Mobele, I. B.; Shimizu, M. Tetrahedron Lett. 1992, 33, 5567.
(21) Suzuki, H.; Tanaka, A.; Yamashita, K. Agric. Biol. Chem. 1987, 3369.

