Total synthesis of cryptophycin-24 (arenastatin A) via Prins cyclization

J.S. Yadav ${ }^{\text {a,* }}$, K.V. Purnima ${ }^{\text {a }}$, B.V. Subba Reddy ${ }^{\text {a }}$, K. Nagaiah ${ }^{\text {a }}$, A.K. Ghamdi ${ }^{\text {b }}$
${ }^{\text {a }}$ CSIR, Indian Institute of Chemical Technology, Hyderabad 500 007, India
${ }^{\mathrm{b}}$ Engineer Abdullah Baqshan for Bee Research, King Saudi University, Saudi Arabia

A R T I C L E I N F O

Article history:

Received 1 May 2011
Revised 27 September 2011
Accepted 29 September 2011
Available online 6 October 2011

Keywords:

Cryptophycins
Cyclic depsipeptides
Prins cyclization
Olefin rearrangement
Grignard reaction

Abstract

A stereoselective synthesis of fragment A of cryptophycin is achieved utilizing the versatile Prins cyclization. Subsequently, the total synthesis of cryptophycin-24 (arenastatin A) has been accomplished by coupling it with the depsipeptide subunit.

© 2011 Elsevier Ltd. All rights reserved.

Cryptophycins were isolated by Schwartz and co-workers from Nostoc sp. strains ATCC 53789. ${ }^{1}$ While these authors established their structures, details of absolute stereochemistry were not demonstrated. Subsequently, a variety of cytotoxins were isolated by Moore and co-worker from a crude lipophilic extract of Nostoc sp. GSV 224 and they established their absolute stereochemistry. ${ }^{2 a}$ Cryptophycins are cyclic depsipeptides and are remarkably potent against tumor cell lines. ${ }^{2 b}$

Cryptophycin $A(\mathbf{1})$ and $B(\mathbf{2})$ exhibit cytotoxic IC_{50} values of 5 and $7 \mathrm{pg} / \mathrm{mL}$, respectively, against KB cells. In 1994, arenastatin A (3) (renamed as cryptophycin-24), another member of the cryptophycin family, was isolated 3 by Kobayashi et al. from the Okinawa marine sponge Dysidea arenaria. It also exhibits cytotoxicity with IC_{50} value of $5 \mathrm{pg} / \mathrm{mL}$ against KB cells. ${ }^{3}$ Moore and co-worker have discovered that the synthetically derived cryptophycin $8(\mathbf{4})$ is more active in vivo than (1) (Fig. 1). ${ }^{4}$

Cryptophycin $A(\mathbf{1})$ was found to be very active against the fungus Cryptococcus, which causes immunodeficiency. ${ }^{2}$ The significant clinical potential of cryptophycins and their low natural abundance have made them attractive synthetic targets. Consequently, some reports on the total synthesis of cryptophycins following multi-step synthetic sequences have been published. ${ }^{5-13}$ However; many of these syntheses employ asymmetric dihydroxylation as a key step to generate syn-diols. In view of their fascinating structures and biological activity, we were interested in the synthesis of cryptophycins using Prins cyclization as a key step for the synthesis of non-peptidic part. ${ }^{14,15}$ We have explored the utility of Prins cycliza-

[^0]tion in the synthesis of various polyketide intermediates for the total synthesis of natural products ${ }^{16}$ and report the total synthesis of cryptophycin-24. In our retrosynthetic analysis (Scheme 1), we envisaged that cryptophycin-24 could be divided into two parts, homoallyl alcohol with four stereogenic centers (Fragment A) and a peptidic subunit (Fragment B). It was proposed to obtain an anti-1,3-diol derivative from 2,4,5,6-tetrasubstituted tetrahydropyran 8 , which in turn could be obtained via the Prins cyclization of the homoallylic alcohol 9 with an aldehyde 10. The synthesis of

cryptophycin A (1) $\mathrm{X}=\mathrm{Cl}, \mathrm{R}=\mathrm{CH}_{3}$
cryptophycin B (2) $\mathrm{X}=\mathrm{Cl}, \mathrm{R}=\mathrm{H}$
cryptophycin-24 (3) X=H, R=H

cryptophycin 8 (4)
Figure 1.

Scheme 1. Retrosynthetic analysis of cryptophycin-24 (arenastatin A) (3).
fragment A began with the homoallylic alcohol 9 which was prepared from (S)-benzyl glycidyl ether 11. ${ }^{17}$ Prins cyclization of 9 with aldehyde $\mathbf{1 0}$ in the presence of TFA (10 equiv) followed by hydrolysis of the resulting trifluoroacetate with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol gave 4hydroxytetrahydropyran 8 with 94% de.

This was separated by column chromatography (Scheme 2). The stereochemistry was assumed to be in line with previous results. ${ }^{16}$ It was later proved by the elaboration of compound $\mathbf{8}$ to the target fragment which was found to be identical to a sample reported earlier. ${ }^{13}$ Chemoselective tosylation of primary alcohol 8 with 1.1 equiv of tosyl chloride in the presence of TEA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the corresponding tosylate $\mathbf{1 2}$ in 82% yield. MOM protection of the secondary alcohol in 12 with methoxymethyl chloride provided the corresponding MOM ether 13 in 76% yield. Treatment of tosylate 13 with NaI in refluxing acetone gave the respective iodide 14 in 86% yield, which on exposure to potassium t-butoxide ${ }^{18}$ in THF and a subsequent rearrangement on silica gel gave the key intermediate 15 in 55% yield. ${ }^{16 \mathrm{~d}}$

Ozonolysis of alkene $\mathbf{1 5}$ afforded the corresponding aldehyde 16, which on treatment with phenylmagnesium bromide in the presence of magnesium bromide diethyl etherate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ afforded syn-selective alcohol 7 in 72% overall yield with 94% de. The presence of MgBr_{2} led to high syn-selectivity in phenyl Grignard reaction, while in the absence of MgBr_{2} an inseparable mixture of diastereomers was obtained in a $1: 1$ ratio. ${ }^{19}$ The MOM group in 7 was deprotected using p-TSA in methanol to furnish the corresponding diol in 65% yield, which in turn was protected as its acetonide $\mathbf{1 7}$ by treatment with 1,2-dimethoxypropane in the presence of catalytic amounts of PPTS in 92% yield. The acetate $\mathbf{1 7}$ was hydrolyzed with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol to yield an alcohol.

This was subsequently debenzylated with Pd / C under H_{2} atmosphere in methanol to furnish diol 18 in 82% yield. Oxidation of primary hydroxyl group in $\mathbf{1 8}$ using TEMPO and BAIB in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by Wittig olefination of the resulting aldehyde with an excess $\mathrm{C}-1$ ylide generated in situ by the reaction of $\mathrm{ICH} \mathrm{HPh}_{3}$ with

10

Scheme 2. Synthesis of 6. Reagents and conditions: (a) (i) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, 4 h ; (ii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \mathrm{rt}, 2 \mathrm{~h}, 65 \%$ over two steps; (b) $p-\mathrm{TSCl}, \mathrm{CH} \mathrm{Cl}_{2}, \mathrm{TEA}, 0^{\circ} \mathrm{C}$ to rt, $8 \mathrm{~h}, 82 \%$; (c) MOM-Cl, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, DIPEA, $0^{\circ} \mathrm{C}$ to rt, $6 \mathrm{~h}, 76 \%$; (d) NaI, acetone, reflux, $24 \mathrm{~h}, 86 \%$; (e) t-BuOK, THF, $0^{\circ} \mathrm{C}, 30 \mathrm{~min}$, silica gel promoted rearrangement, 55%; (f) $\mathrm{O}_{3}, \mathrm{CH} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$, 15 min ; (g) PhMgBr in $\mathrm{Et}_{2} \mathrm{O}, \mathrm{MgBr}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 45 \mathrm{~min}, 72 \%$ over two steps; (h) (i) p-TSA, MeOH, reflux, $6 \mathrm{~h}, 65 \%$; (ii) 2,2-DMP, PPTS, rt, $3 \mathrm{~h}, 92 \%$; (i) (i) $\mathrm{K}_{2} \mathrm{CO}{ }_{3}$, MeOH , rt, 2 h , quant; (ii) $5 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{H}_{2}, 3 \mathrm{~h}, 82 \%$; (j) (i) TEMPO, BAIB, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 1 h ; (ii) $\mathrm{ICH}_{3} \mathrm{PPh}_{3}, t$-BuOK, $\mathrm{THF}, 0^{\circ} \mathrm{C}$ to rt, $4 \mathrm{~h}, 76 \%$ from 18.

Scheme 3. Synthesis of 3. Reagents and conditions: (a) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 4 \mathrm{~h}$, quant; (b) 2,4,6-trichlorobenzoyl chloride, DIPEA, THF, $0^{\circ} \mathrm{C}$ to rt, 2 h , then 6, DMAP, rt, $18 \mathrm{~h}, 80 \%$ from 19; (c) Grubbs' II catalyst ($10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, $2 \mathrm{~h}, 75 \%$; (d) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, $4 \mathrm{~h}, 80 \%$; (e) (i) (MeO) $\mathrm{CH}_{3} \mathrm{CH}, \mathrm{PPTS}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 1 \mathrm{~h}$; (ii) AcBr , $\mathrm{CH}_{2} \mathrm{Cl} 2$, rt, 2 h ; (iii) $\mathrm{KHCO}_{3}, \mathrm{DME} / \mathrm{EtOH} / \mathrm{MeOH}(6: 4: 1), 40^{\circ} \mathrm{C}, 6 \mathrm{~h}, 65 \%$ from 22.
potassium t-butoxide gave the target fragment A of cryptophycin246 in 76% yield. The data of a target fragment A of cryptophycin24 were identical in all respects to that reported in literature. ${ }^{13}$

The depsipeptide subunit (Fragment B) was constructed from (D)- N-Boc-tyrosine methyl ester, β-alanine, and t -leucic acid t butyl ester. ${ }^{\text {dd }}$ The t-butyl group of $\mathbf{1 9}$ was removed with TFA and the resulting acid 5 was coupled with alcohol $\mathbf{6}$ under Yamaguchi conditions to afford the compound 20 in 80% overall yield. ${ }^{7 \mathrm{~d}}$ The diene $\mathbf{2 0}$ was subjected to Grubbs' second generation catalyst in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under reflux conditions to afford the RCM product 21 in 75% yield (Scheme 3). ${ }^{11}$ The compound 21 was subjected to TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford diol 22 (80\%). The syn-diol 22 was then converted into the epoxide in three sequential steps in 65% yield. Initially, the diol was treated with trimethylorthoformate in the presence of PPTS in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by acetyl bromide to produce the anticipated bromohydrin formate, which was taken for the next step without purification. The formation of the desired epoxide was achieved using solid KHCO_{3} in a mixture of DME/ethanol/ methanol (6:4:1) at $40^{\circ} \mathrm{C}$ for $6 \mathrm{~h} .{ }^{13}$ The data of the target molecule 3, cryptophycin-24 (arenastatin A) were identical in all respects to that reported in. ${ }^{4}$

In conclusion, we have proved the versatility of the Prins cyclization in natural product synthesis by achieving the stereoselective synthesis of cryptophycin-24 (arenastatin A). Further applications of the Prins cyclization in the synthesis of natural products are in progress.

Acknowledgments

K.V.P. thanks CSIR New Delhi for the award of fellowships and J.S.Y. is thankful to DST for the financial assistance under J.C. Bose fellowship scheme. The author acknowledges the partial support by King Saud University for Global Research Network for Organic Synthesis (GRNOS).

References and notes

1. (a) Schwartz, R. E.; Hirsch, C. F.; Sesin, D. F.; Flor, J. E.; Chartrain, M.; Fromtling, R. E.; Harris, G. H.; Salvatore, M. J.; Liesch, J. M.; Yudin, K. J. Ind. Microbiol. 1990, 5, 113-118; (b) Hirsch, C. F.; Liesch, J. M.; Salvatore, M. J.; Schwatrz, R. E.; Sesin, D. F. U.S. Patent 4, 946, 835, 1990.
2. (a) Trimurtulu, G.; Ohtani, I.; Patterson, G. M. L.; Moore, R. E.; Corbett, T. H.; Valeriote, F. A.; Demchik, L. J. Am. Chem. Soc. 1994, 116, 4729-4737; (b) Smith, C. D.; Zhang, X.; Mooberry, S. L.; Patterson, G. M. L.; Moore, R. E. Cancer Res. 1994, 54, 3779-3784; (c) Barrow, R. A.; Hemscheidt, T.; Liang, J.; Paik, S.; Moore, R. E.; Tius, M. A. J. Am. Chem. Soc. 1995, 117, 2479-2490.
3. (a) Kobayashi, M.; Aoki, S.; Ohyabu, N.; Kurosu, M.; Wang, W.; Kitagawa, I. Tetrahedron Lett. 1994, 35, 7969-7972; (b) Koiso, Y.; Morita, K.; Kobayashi, M.; Wang, W.; Ohyabu, N.; Iwasaki, S. Chem. Biol. Interact. 1996, 102, 183-191; (c) Kobayashi, M.; Wang, W.; Ohyabu, N.; Kurosu, M.; Kitagawa, I. Chem. Pharm. Bull. 1995, 43, 1598-1600.
4. Trimurtulu, G.; Ogino, J.; Heltzel, C. E.; Husebo, T. L.; Jensen, C. M.; Larsen, L. K.; Patterson, G. M. L.; Moore, R. E.; Mooberry, S. L.; Corbett, T. H.; Valeriote, F. A. J. Am. Chem. Soc. 1995, 117, 12030-12049.
5. (a) Kobayashi, M.; Wang, W.; Ohyabu, N.; Kurosu, M.; Kitagawa, I. Chem. Pharm. Bull. 1994, 42, 2394-2396; (b) Ghosh, A. K.; Bischoff, A. Org. Lett. 2000, 2, 15731575; (c) Chang, H. T.; Sharpless, K. B. J. Org. Chem. 1996, 61, 6456-6457; (d) Liang, J.; Hoard, D. W.; Khau, V. V.; Martinelli, M. J.; Moher, E. D.; Moore, R. E.; Tius, M. A. J. Org. Chem. 1999, 64, 1459-1463; (e) Varie, D. L.; Shih, C.; Hay, D. A.; Andis, S. L.; Corbett, T. H.; Gossett, L. S.; Janisse, S. K.; Martinelli, M. J.; Moher, E. D.; Schultz, R. M.; Toth, J. E. Bioorg. Med. Chem. Lett. 1999, 9, 369-374; (f) Norman, B. H.; Hemscheidt, T.; Schultz, R. M.; Andis, S. L. J. Org. Chem. 1998, 63, 5288-5294; (g) Georg, G. I.; Ali, S. M.; Stella, V. J.; Waugh, W. N.; Himes, R. H. Bioorg. Med. Chem. Lett. 1998, 8, 1959-1962; (h) Raghavan, S.; Tony, K. A. J. Org. Chem. 2003, 68, 5002-5005.
6. (a) Eißler, S.; Stoncius, A.; Nahrwold, M.; Sewald, N. Synthesis 2006, 22, 37473789; (b) Eggen, M.; Georg, G. I. Med. Res. Rev. 2002, 22, 85-101; (c) Tius, M. A. Tetrahedron 2002, 58, 4343-4367; (d) Kotoku, N.; Narumi, F.; Kato, T.; Yamaguchi, M.; Kobayashi, M. Tetrahedron Lett. 2007, 48, 7147-7150; (e) Kotoku, N.; Kato, T.; Narumi, F.; Ohtani, E.; Kamada, S.; Aoki, S.; Okada, N.; Nakagawa, S.; Kobayashi, M. Bioorg. Med. Chem. 2006, 14, 7446-7745.
7. (a) White, J. D.; Hong, J.; Robarge, L. A. Tetrahedron Lett. 1998, 39, 8779-8782; (b) White, J. D.; Hong, J.; Robarge, L. A. J. Org. Chem. 1999, 64, 6206-6216; (c) Eggen, M. J.; Mossman, C. J.; Buck, S. B.; Nair, S. K.; Bhat, L.; Ali, S. M.; Reiff, E. A.; Boge, T. C.; Georg, G. I. J. Org. Chem. 2000, 65, 7792-7799; (d) Tripathy, N. K.; Georg, G. I. Tetrahedron Lett. 2004, 45, 5309-5311; (e) Eißler, S.; Bogner, T.; Nahrwold, M.; Sewald, N. Chem. Eur. J. 2009, 15, 11273-11287.
8. (a) Gardinier, K. M.; Leahy, J. W. J. Org. Chem. 1997, 62, 7098-7099; (b) Ali, S. M.; Georg, G. I. Tetrahedron Lett. 1997, 38, 1703-1706.
9. Liang, J.; Moher, E. D.; Moore, R. E.; Hoard, D. W. J. Org. Chem. 2000, 65, 31433147.
10. Pousst, C.; Haddad, M.; Larcheveque, M. Tetrahedron 2001, 57, 7163-7166.
11. Li, L. H.; Tius, M. A. Org. Lett. 2002, 4, 1637-1640.
12. Mast, C. A.; Eißler, S.; Stončius, A.; Stammler, H. G.; Neumann, B.; Sewald, N. Chem. Eur. J. 2005, 11, 4664-4677.
13. Eißler, S.; Markus, N.; Neumann, B.; Stammler, H. G.; Sewald, N. Org. Lett. 2007, 9, 817-819.
14. (a) Barry, C.; St., J.; Crosby, S. R.; Harding, J. R.; Hughes, R. A.; King, C. D.; Parker, G. D.; Willis, C. L. Org. Lett. 2003, 5, 2429-2432; (b) Yang, X. F.; Mague, J. T.; Li, C. J.J. Org. Chem. 2001, 66, 739-747; (c) Yadav, J. S.; Reddy, B. V. S.; Sekhar, K. C.; Gunasekar, D. Synthesis 2001, 6, 885-888; (d) Yadav, J. S.; Reddy, B. V. S.; Reddy, M. S.; Niranjan, N. J. Mol. Catal. A: Chem. 2004, 210, 99-103; (e) Yadav, J. S.; Reddy, B. V. S.; Reddy, M. S.; Niranjan, N.; Prasad, A. R. Eur. J. Org. Chem. 2003, 9, 1779-1783.
15. (a) Aubele, D. L.; Wan, S.; Floreancig, P. E. Angew. Chem., Int. Ed. 2005, 44, 34853488; (b) Barry, C. S.; Bushby, N.; Harding, J. R.; Willis, C. S. Org. Lett. 2005, 7, 2683-2686; (c) Cossey, K. N.; Funk, R. L. J. Am. Chem. Soc. 2004, 126, 1221612217; (d) Crosby, S. R.; Harding, J. R.; King, C. D.; Parker, G. D.; Willis, C. L. Org. Lett. 2002, 4, 3407-3410; (e) Marumoto, S.; Jaber, J. J.; Vitale, J. P.; Rychnovsky, S. D. Org. Lett. 2002, 4, 3919-3922; (f) Kozmin, S. A. Org. Lett. 2001, 3, 755-758; (g) Jaber, J. J.; Mitsui, K.; Rychnovsky, S. D. J. Org. Chem. 2001, 66, 4679-4686; (h) Kopecky, D. J.; Rychnovsky, S. D. J. Am. Chem. Soc. 2001, 123, 8420-8421; (i) Rychnovsky, S. D.; Thomas, C. R. Org. Lett. 2000, 2, 1217-1219; (j) Rychnovsky,
S. D.; Yang, G.; Hu, Y.; Khire, U. R. J. Org. Chem. 1997, 62, 3022-3023; (k) Su, Q.; Panek, J. S. J. Am. Chem. Soc. 2004, 126, 2425-2430.
16. (a) Yadav, J. S.; Reddy, M. S.; Rao, P. P.; Prasad, A. R. Tetrahedron Lett. 2006, 47, 4397-4401; (b) Yadav, J. S.; Reddy, M. S.; Prasad, A. R. Tetrahedron Lett. 2006, 47, 4937-4941; (c) Yadav, J. S.; Reddy, M. S.; Rao, P. P.; Prasad, A. R. Tetrahedron Lett. 2006, 47, 4995-4998; (d) Yadav, J. S.; Reddy, M. S.; Rao, P. P.; Prasad, A. R. Synlett 2007, 2049-2052. Refs. cited there in.
17. (a) Furrow, M. E.; Schaus, S. E.; Jacobsen, E. N. J. Org. Chem. 1998, 68, 67766777; (b) Yadav, J. S.; Reddy, M. S.; Prasad, A. R. Tetrahedron Lett. 2005, 46, 2133-2136.
18. Fuwa, H.; Okamura, Y.; Natsugari, H. Tetrahedron 2004, 60, 5341-5352.
19. Brabander, J. D.; Vandewalle, M. Synthesis 1994, 8, 855-865.

[^0]: * Corresponding author. Tel.: +91 40 27193030; fax: +91 4027160512

 E-mail address: yadavpub@iict.res.in (J.S. Yadav).

